存储器模板制作过程,如何制作ic卡

seosqwseo4周前 (08-24)测评日记22

一、用纸制品制作六棱宝塔的制做过程步骤

用纸制品制作六棱宝塔的制做过程步骤

玲珑塔,塔玲珑,玲珑宝塔有七层,这一次我就用纸张来折的是宝塔,七层的宝塔。

工具/原料

纸张七张

现将纸张裁成大小不同的七个正方形。

首先取其中的一张,折成双三角形.

上层的两角向中心对折

从中间拉开再折

向上折两角

然后向后折

拉出来,用同样的方法折塔身另一面,这样就完成了其中的一层。

按照上面的步骤折出其余的六层,注意大的那个,也就是作为底座的只折一面就可以了。

后插接到一起就变成一座宝塔了。

可参考::jingyan.baidu./article/676629972013fd54d51b841e.

制作米酒过程步骤怎么做?

米酒制作步骤

1、糯米泡水8小时以上,以手能拈碎为准; 2、用蒸笼将糯米蒸熟,但要偏硬,不能软;

3、将糯米放凉,以手翻糯米不烫手为准(这步很关键);

4、将糯米盛放在用以发酵的容器中,边手翻糯米,边撒放粉末状酒曲,要求撒放均匀且和糯米混合充分; 5、酒曲留一点后使用;

6、将之前放凉的凉开水(以不烫手为准)均匀撒在糯米面上,并用手或勺子将糯米压实、压平;

7、用手或筷子在压实的糯米中间及其周边掏3~4个小洞,小洞大小与硬币相当,小洞深至容器底部;

8、将剩余的酒曲均分,撒进每个小洞,并用手涂抹均匀; 9、再用凉开水分别倒进撒了酒曲的小洞,深度以一半洞深为准;

10、用盖子密闭容器,若盖子有口子,可用保鲜膜先封住容器口再盖盖子,保鲜膜应用刀子均匀戳穿几个小眼;

11、用被子或厚衣服包裹容器,放置无油烟的地方进行发酵。 12、3天后即可食用米酒。 13、注意事项:

(1)制作过程,手、勺子、筷子、容器等均应无油、无生水,可先用凉开水洗净;

(2)制作过程,切勿油、生水接触糯米和酒曲;(3)发酵过程,封闭容器很关键,不要让空气进入;

(4)发酵过程,对容器进行保温很重要,酵母菌易繁殖的温度为30℃左右。

陶艺制作过程步骤有哪些

一般陶吧里有这样几个过程:

1、揉泥。使劲揉拼命揉,主要目的是把泥中的空气排掉,以免使拉呸过程泥突然断掉及烧制过程中不炸。看似简单,却是基础,在陶艺家眼里也费力。

2、拉呸制作:包括定中心,中心不稳拉的呸不稳,厚度不均。成为陶艺家真正的开始都是从找中心开始的;拉升、做造型(凹凸有致)、大小高度随心而动,这就不说了,看个人造诣。

3、晾干。拉的呸首先要经过一段时间的自然干才能进行下一不动作。

4、修呸。磨底,修饰;

5、上色;

6、染釉;

7、1350度高温烧制;

8、出成品啦。

9、打字好累!

陶艺制作方法分别为泥条盘筑成型法、手捏(雕塑)成型法、泥板成型法、印模(印坯)成型法、拉坯成型法、泥浆铸件成型法。

陶艺制作过程步骤有以下:

1、拉坯成型发是利用拉坯机产生的离心运动,在旋转过程中,对含水半固化状态的泥料按照设计构思拉伸成型。

2、泥板成型发用泥板制作陶艺主要的特征就是容易形成较大的完整的表面,成型速度较快。泥板成型技术要求很高。要做好泥板成型作品,必须掌握好泥板制作,对所用泥料的感知,泥板结合等技术问题。

3、泥条盘筑成型法,泥条法是通过泥条来构筑成型的一种盘筑技法。泥条可以是经手搓成,也可以通过压泥条工具挤压成型。

宝鸡纸制品制作人员自我介绍要怎么做。

住在台州,就读扬州大学,喜欢现代舞请你自我介绍一下?1)这是面试的必考题目。2)介绍内容要与个人简历相一致。3)表述方式上尽量口语化。4)要切中要害,不谈无关、无用的内容。5)条理要清晰,层次要分明。6)事先好以文字的形式写好背熟。2、谈谈你的家庭

玛雅maya制作表盘过程步骤急需

DirectX 11 Shader节点的属性,指定了 MayaUberShader着色器文件。

要使用该着色器,您必须在 Viewport 2.0的 DirectX 11环境中工作,并启用 dx11shader.mll插件。有关详细信息。

您可以在 Hypershade创建栏中找到 DirectX 11 Shader。创建着色器后,会自动加载 MayaUberShader.fx文件。

dx11Shader.mll插件可使您在 Maya Viewport 2.0中加载并查看自己的 HLSL着色器。使用 Hypershade创建 DirectX 11 shader时,会自动连接 MayaUberShader.fxo文件;但是,您也可以改为加载自定义 HLSL着色器。此外,<maya directory>\presets\HLSL11\examples\中提供了其他示例 HLSL着色器。

选择 DirectX作为渲染引擎(方法 1)

选择“窗口>设置/**项>**项>显示”(Window> Settings/Preferences> Preferences> Display)并将“渲染引擎”(Rendering engine)设置为“DirectX 11”。

重要信息若要使用 DirectX渲染引擎,您必须使用 64位的 Windows和可兼容 DirectX 11的显卡。

在面板菜单中选择“渲染器> Viewport 2.0”(Renderer> Viewport 2.0)将工作区切换到 Viewport 2.0。

注意您的工作区平视显示仪现在应指示 Viewport 2.0(DirectX 11)。

选择“窗口>设置/**项>插件管理器”(Window> Settings/Preferences> Plug-in Manager)并加载 dx11Shader.mll插件。

选择 DirectX作为渲染引擎(方法 2)

此环境变量将覆盖交互式和批处理会话的用户**项(“窗口>设置/**项>**项>显示”(Window> Settings/Preferences> Preferences> Display))(使用-hw2选项)。

将 MAYA_VP2_DEVICE_OVERRIDE设置为 VirtualDeviceDx11可在 Viewport 2.0中渲染时始终使用 DirectX 11。

提示将此环境变量设置为 VirtualDeviceGL可在 Viewport 2.0中渲染时始终使用 OpenGL。

注意取消设置该环境变量可再次使用用户**项来选择渲染引擎。

创建 DirectX着色器

选择“窗口>渲染编辑器> Hypershade”(Window> Rendering Editors> Hypershade),以打开“Hypershade”窗口。在“创建”(Create)栏中,选择“Maya>曲面> DirectX 11 Shader”(Maya> Surface> DirectX 11 Shader)。

将创建 DirectX 11 Shader,同时自动加载 MayaUberShader.fx。

按 6以获得纹理模式,按 7以使用场景照明。

提示纹理和非纹理模式均受支持,且所有灯光模式(“使用所有灯光”(Use All Lights)、“使用选定灯光”(Use Selected Lights)、“不使用灯光”(Use No Lights)和“使用默认照明”(Use Default Lighting))均受支持。

怎么制作教师节贺卡全部过程步骤

我们先去买来做手工的材料,然后打开包装盒,查看材料,材料包包含纸卡,颜料与模板工具,带有图案的纸张,将图案上的图案剪下来。

cpu制造的十个过程步骤

(1)硅提纯

生产CPU等芯片的材料是半导体,现阶段主要的材料是硅Si,这是一种非金属元素,从化学的角度来看,由于它处于元素周期表中金属元素区与非金属元素区的交界处,所以具有半导体的性质,适合于制造各种微小的晶体管,是目前适宜于制造现代大规模集成电路的材料之一。

在硅提纯的过程中,原材料硅将被熔化,并放进一个巨大的石英熔炉。这时向熔炉里放入一颗晶种,以便硅晶体围着这颗晶种生长,直到形成一个几近完美的单晶硅。以往的硅锭的直径大都是200毫米,而CPU厂商正在增加300毫米晶圆的生产。

(2)切割晶圆

硅锭造出来了,并被整型成一个完美的圆柱体,接下来将被切割成片状,称为晶圆。晶圆才被真正用于CPU的制造。所谓的“切割晶圆”也就是用机器从单晶硅棒上切割下一片事先确定规格的硅晶片,并将其划分成多个细小的区域,每个区域都将成为一个CPU的内核(Die)。一般来说,晶圆切得越薄,相同量的硅材料能够制造的CPU成品就越多。

(3)影印(Photolithography)

在经过热处理得到的硅氧化物层上面涂敷一种光阻(Photoresist)物质,紫外线通过印制着CPU复杂电路结构图样的模板照射硅基片,被紫外线照射的地方光阻物质溶解。而为了避免让不需要被曝光的区域也受到光的干扰,必须制作遮罩来遮蔽这些区域。这是个相当复杂的过程,每一个遮罩的复杂程度得用10GB数据来描述。

(4)蚀刻(Etching)

这是CPU生产过程中重要*作,也是CPU工业中的重头技术。蚀刻技术把对光的应用推向了极限。蚀刻使用的是波长很短的紫外光并配合很大的镜头。短波长的光将透过这些石英遮罩的孔照在光敏抗蚀膜上,使之曝光。接下来停止光照并移除遮罩,使用特定的化学溶液清洗掉被曝光的光敏抗蚀膜,以及在下面紧贴着抗蚀膜的一层硅。

然后,曝光的硅将被原子轰击,使得暴露的硅基片局部掺杂,从而改变这些区域的导电状态,以制造出N井或P井,结合上面制造的基片,CPU的门电路就完成了。

(5)重复、分层

为加工新的一层电路,再次生长硅氧化物,然后沉积一层多晶硅,涂敷光阻物质,重复影印、蚀刻过程,得到含多晶硅和硅氧化物的沟槽结构。重复多遍,形成一个3D的结构,这才是终的CPU的核心。每几层中间都要填上金属作为导体。Intel的Pentium 4处理器有7层,而AMD的Athlon 64则达到了9层。层数决定于设计时CPU的布局,以及通过的电流大小。

(6)封装

这时的CPU是一块块晶圆,它还不能直接被用户使用,必须将它封入一个陶瓷的或塑料的封壳中,这样它就可以很容易地装在一块电路板上了。封装结构各有不同,但越高级的CPU封装也越复杂,新的封装往往能带来芯片电气性能和稳定性的提升,并能间接地为主频的提升提供坚实可靠的基础。

(7)多次测试

测试是一个CPU制造的重要环节,也是一块CPU出厂前必要的考验。这一步将测试晶圆的电气性能,以检查是否出了什么差错,以及这些差错出现在哪个步骤(如果可能的话)。接下来,晶圆上的每个CPU核心都将被分开测试。

由于SRAM(静态随机存储器,CPU中缓存的基本组成)结构复杂、密度高,所以缓存是CPU中容易出问题的部分,对缓存的测试也是CPU测试中的重要部分。

每块CPU将被进行完全测试,以检验其全部功能。某些CPU能够在较高的频率下运行,所以被标上了较高的频率;而有些CPU因为种种原因运行频率较低,所以被标上了较低的频率。后,个别CPU可能存在某些功能上的缺陷,如果问题出在缓存上,制造商仍然可以屏蔽掉它的部分缓存,这意味着这块CPU依然能够出售,只是它可能是Celeron等低端产品。

当CPU被放进包装盒之前,一般还要进行后一次测试,以确保之前的工作准确无误。根据前面确定的高运行频率和缓存的不同,它们被放进不同的包装,销往世界各地。

网络游戏的制作过程步骤怎么样

非常复杂游戏人物的各种动作都需要真人演练再经电脑制作合成

二、单晶硅芯片制造过程

制造芯片的基本原料

如果问及芯片的原料是什么,大家都会轻而易举的给出答案—是硅。这是不假,但硅又来自哪里呢?其实就是那些不起眼的沙子。难以想象吧,价格昂贵,结构复杂,功能强大,充满着神秘感的芯片竟然来自那根本一文不值的沙子。当然这中间必然要经历一个复杂的制造过程才行。不过不是随便抓一把沙子就可以做原料的,一定要精挑细选,从中提取出纯净的硅原料才行。试想一下,如果用那廉价而又储量充足的原料做成芯片,那么成品的质量会怎样,你还能用上像现在这样高性能的处理器吗?

除去硅之外,制造芯片还需要一种重要的材料就是金属。目前为止,铝已经成为制作处理器内部配件的主要金属材料,而铜则逐渐被淘汰,这是有一些原因的,在目前的芯片工作电压下,铝的电迁移特性要明显好于铜。所谓电迁移问题,就是指当大量电子流过一段导体时,导体物质原子受电子撞击而离开原有位置,留下空位,空位过多则会导致导体连线断开,而离开原位的原子停留在其它位置,会造成其它地方的短路从而影响芯片的逻辑功能,进而导致芯片无法使用。

这就是许多Northwood Pentium 4换上SNDS(北木暴毕综合症)的原因,当发烧友们第一次给Northwood Pentium 4超频就急于求成,大幅提高芯片电压时,严重的电迁移问题导致了芯片的瘫痪。这就是intel首次尝试铜互连技术的经历,它显然需要一些改进。不过另一方面讲,应用铜互连技术可以减小芯片面积,同时由于铜导体的电阻更低,其上电流通过的速度也更快。

除了这两样主要的材料之外,在芯片的设计过程中还需要一些种类的化学原料,它们起着不同的作用,这里不再赘述。

芯片制造的准备阶段

在必备原材料的采集工作完毕之后,这些原材料中的一部分需要进行一些预处理工作。而作为主要的原料,硅的处理工作至关重要。首先,硅原料要进行化学提纯,这一步骤使其达到可供半导体工业使用的原料级别。而为了使这些硅原料能够满足集成电路制造的加工需要,还必须将其整形,这一步是通过溶化硅原料,然后将液态硅注入大型高温石英容器而完成的。

而后,将原料进行高温溶化。中学化学课上我们学到过,许多固体内部原子是晶体结构,硅也是如此。为了达到高性能处理器的要求,整块硅原料必须高度纯净,及单晶硅。然后从高温容器中采用旋转拉伸的方式将硅原料取出,此时一个圆柱体的硅锭就产生了。从目前所使用的工艺来看,硅锭圆形横截面的直径为200毫米。不过现在intel和其它一些公司已经开始使用300毫米直径的硅锭了。在保留硅锭的各种特性不变的情况下增加横截面的面积是具有相当的难度的,不过只要企业肯投入大批资金来研究,还是可以实现的。intel为研制和生产300毫米硅锭而建立的工厂耗费了大约35亿美元,新技术的成功使得intel可以制造复杂程度更高,功能更强大的集成电路芯片。而200毫米硅锭的工厂也耗费了15亿美元。下面就从硅锭的切片开始介绍芯片的制造过程。

单晶硅锭

在制成硅锭并确保其是一个绝对的圆柱体之后,下一个步骤就是将这个圆柱体硅锭切片,切片越薄,用料越省,自然可以生产的处理器芯片就更多。切片还要镜面精加工的处理来确保表面绝对光滑,之后检查是否有扭曲或其它问题。这一步的质量检验尤为重要,它直接决定了成品芯片的质量。

单晶硅锭

新的切片中要掺入一些物质而使之成为真正的半导体材料,而后在其上刻划代表着各种逻辑功能的晶体管电路。掺入的物质原子进入硅原子之间的空隙,彼此之间发生原子力的作用,从而使得硅原料具有半导体的特性。今天的半导体制造多选择CMOS工艺(互补型金属氧化物半导体)。其中互补一词表示半导体中N型MOS管和P型MOS管之间的交互作用。而N和P在电子工艺中分别代表负极和正极。多数情况下,切片被掺入化学物质而形成P型衬底,在其上刻划的逻辑电路要遵循nMOS电路的特性来设计,这种类型的晶体管空间利用率更高也更加节能。同时在多数情况下,必须尽量限制pMOS型晶体管的出现,因为在制造过程的后期,需要将N型材料植入P型衬底当中,而这一过程会导致pMOS管的形成。

在掺入化学物质的工作完成之后,标准的切片就完成了。然后将每一个切片放入高温炉中加热,通过控制加温时间而使得切片表面生成一层二氧化硅膜。通过密切监测温度,空气成分和加温时间,该二氧化硅层的厚度是可以控制的。在intel的90纳米制造工艺中,门氧化物的宽度小到了惊人的5个原子厚度。这一层门电路也是晶体管门电路的一部分,晶体管门电路的作用是控制其间电子的流动,通过对门电压的控制,电子的流动被严格控制,而不论输入输出端口电压的大小。准备工作的后一道工序是在二氧化硅层上覆盖一个感光层。这一层物质用于同一层中的其它控制应用。这层物质在干燥时具有很好的感光效果,而且在光刻蚀过程结束之后,能够通过化学方法将其溶解并除去。

光刻蚀

这是目前的芯片制造过程当中工艺非常复杂的一个步骤,为什么这么说呢?光刻蚀过程就是使用一定波长的光在感光层中刻出相应的刻痕,由此改变该处材料的化学特性。这项技术对于所用光的波长要求极为严格,需要使用短波长的紫外线和大曲率的透镜。刻蚀过程还会受到晶圆上的污点的影响。每一步刻蚀都是一个复杂而精细的过程。设计每一步过程的所需要的数据量都可以用10GB的单位来计量,而且制造每块处理器所需要的刻蚀步骤都超过20步(每一步进行一层刻蚀)。而且每一层刻蚀的图纸如果放大许多倍的话,可以和整个纽约市外加郊区范围的地图相比,甚至还要复杂,试想一下,把整个纽约地图缩小到实际面积大小只有100个平方毫米的芯片上,那么这个芯片的结构有多么复杂,可想而知了吧。

当这些刻蚀工作全部完成之后,晶圆被翻转过来。短波长光线透过石英模板上镂空的刻痕照射到晶圆的感光层上,然后撤掉光线和模板。通过化学方法除去暴露在外边的感光层物质,而二氧化硅马上在陋空位置的下方生成。

掺杂

在残留的感光层物质被去除之后,剩下的就是充满的沟壑的二氧化硅层以及暴露出来的在该层下方的硅层。这一步之后,另一个二氧化硅层制作完成。然后,加入另一个带有感光层的多晶硅层。多晶硅是门电路的另一种类型。由于此处使用到了金属原料(因此称作金属氧化物半导体),多晶硅允许在晶体管队列端口电压起作用之前建立门电路。感光层同时还要被短波长光线透过掩模刻蚀。再经过一部刻蚀,所需的全部门电路就已经基本成型了。然后,要对暴露在外的硅层通过化学方式进行离子轰击,此处的目的是生成N沟道或P沟道。这个掺杂过程创建了全部的晶体管及彼此间的电路连接,没个晶体管都有输入端和输出端,两端之间被称作端口。

重复这一过程

从这一步起,你将持续添加层级,加入一个二氧化硅层,然后光刻一次。重复这些步骤,然后就出现了一个多层立体架构,这就是你目前使用的处理器的萌芽状态了。在每层之间采用金属涂膜的技术进行层间的导电连接。今天的P4处理器采用了7层金属连接,而Athlon64使用了9层,所使用的层数取决于初的版图设计,并不直接代表着终产品的性能差异。

接下来的几个星期就需要对晶圆进行一关接一关的测试,包括检测晶圆的电学特性,看是否有逻辑错误,如果有,是在哪一层出现的等等。而后,晶圆上每一个出现问题的芯片单元将被单独测试来确定该芯片有否特殊加工需要。

而后,整片的晶圆被切割成一个个独立的处理器芯片单元。在初测试中,那些检测不合格的单元将被遗弃。这些被切割下来的芯片单元将被采用某种方式进行封装,这样它就可以顺利的插入某种接口规格的主板了。大多数intel和AMD的处理器都会被覆盖一个散热层。在处理器成品完成之后,还要进行全方位的芯片功能检测。这一部会产生不同等级的产品,一些芯片的运行频率相对较高,于是打上高频率产品的名称和编号,而那些运行频率相对较低的芯片则加以改造,打上其它的低频率型号。这就是不同市场定位的处理器。而还有一些处理器可能在芯片功能上有一些不足之处。比如它在缓存功能上有缺陷(这种缺陷足以导致绝大多数的芯片瘫痪),那么它们就会被屏蔽掉一些缓存容量,降低了性能,当然也就降低了产品的售价,这就是Celeron和Sempron的由来。

在芯片的包装过程完成之后,许多产品还要再进行一次测试来确保先前的制作过程无一疏漏,且产品完全遵照规格所述,没有偏差。

三、如何制作ic卡

IC卡制作过程是由:系统设计→芯片制造→磨割圆片→造微模板→卡片制造

→卡初始化→处理发行的过程。

1、系统设计是根据应用系统对卡的功能和安全的要求设计卡内芯片:以及工艺水平和成本对智能卡的MPU、存储器容量和COS提出具体要求。

2、芯片制造是在单晶硅圆片上制作电路。设计者将设计好的版图提交给芯片制造厂。然后造厂根据设计与工艺过程的要求,生产多层掩膜版。在一个圆片上可制作几百~几千个相互独立的电路,每个电路即为一个小芯片。注意压块是否会给攻击者以可乘之机。

3、磨割圆片:厚度要符合IC卡的规定,研磨后将圆片切割成众多小芯片。

4、造微模块:将制造好的芯片安装在有8个触点的印制电路薄片上,称作微模块。

5、卡片制造:将微模块嵌入卡片中,并完成卡片表面的印刷工作。

6、卡初始化:先核对运输码。如为逻辑加密卡,运输码可由制造厂写入用户密码区,发行商核对正确后改写成用户密码对于智能卡,在此时可进行写入密码、密钥、建立文件等*作。此后该卡片进入用户方式,而且永远也不能回到以前的工作方式,这样做也是为了保证卡的安全。

7、处理发行:发行商通过读写设备对卡进行个人化处理,根据应用要求写入一些信息。完成以上这些过程的卡,就成为一张能唯一标识用户的卡。

相关文章

TCL电视85Q6E测评分享

TCL电视85Q6E测评分享

很多小伙伴在关注TCL电视85Q6E怎么样?质量好不好?使用测评如何?本文综合已购用户的客观使用分享和相应的优惠信息,为大家推荐一款高性价比的产品,一起来看看吧。...

AOC65英寸4K智能会议平板电视触屏视频会议一体机教学电子白板智慧屏商用显示65T12S+推车+两件套怎么样

AOC65英寸4K智能会议平板电视触屏视频会议一体机教学电子白板智慧屏商用显示65T12S+推车+两件套怎么样

很多小伙伴在关注AOC65英寸4K智能会议平板电视触屏视频会议一体机教学电子白板智慧屏商用显示65T12S+推车+两件套怎么样?质量好不好?使用测评如何?本文综合已购用户的...

海尔(Haier)电视价格是多少

海尔(Haier)电视价格是多少

很多小伙伴在关注海尔(Haier)电视怎么样?质量好不好?使用测评如何?本文综合已购用户的客观使用分享和相应的优惠信息,为大家推荐一款高性价比的产品,一起来看看吧。...

TCL电视85V6E质量好吗

TCL电视85V6E质量好吗

很多小伙伴在关注TCL电视85V6E怎么样?质量好不好?使用测评如何?本文综合已购用户的客观使用分享和相应的优惠信息,为大家推荐一款高性价比的产品,一起来看看吧。...

Camorama凯眸4K全景运动摄像机车载支架测评怎么样

Camorama凯眸4K全景运动摄像机车载支架测评怎么样

很多小伙伴在关注Camorama凯眸4K全景运动摄像机车载支架怎么样?质量好不好?使用测评如何?本文综合已购用户的客观使用分享和相应的优惠信息,为大家推荐一款高性价比的产品...

六品堂课程专拍链接质量好不好

六品堂课程专拍链接质量好不好

很多小伙伴在关注六品堂课程专拍链接怎么样?质量好不好?使用测评如何?本文综合已购用户的客观使用分享和相应的优惠信息,为大家推荐一款高性价比的产品,一起来看看吧。...