cpu工作过程动画?cpu是怎么的工作原理

seosqwseo4个月前 (09-22)测评日记35

一、视窗渲染器用的是cpu还是gpu

cpu。3D渲染主要靠cpu,cpu起决定作用,因为通常的3D制图软件终渲染的时候都是靠CPU*算的,所以好配备一个多核CPU。

渲染在电脑绘图中是指用软件从模型生成图像的过程。模型是用严格定义的语言或者数据结构对于三维物体的描述,它包括几何、视点、纹理以及照明信息。

渲染是将三维场景中的模型,按照设定好的环境、灯光、材质及渲染参数。二维投影成数字图像的过程。

扩展资料

常见的渲染软件

1、Renderman

Renderman是一套基于著名的REYES渲染引擎开发的计算机图像渲染规范,所有符合这个规范的渲染器都称为RenderMan兼容渲染器。

它是由著名动画公司Pixar皮克斯开发的,Renderman原本是皮克斯的内部插件,后来公开发售了。在当今的动画电影和**特效等高端领域,renderMan兼容渲染器是必不可少的一个渲染解决方案,据说好莱坞几乎所有的电影特效都会用到renderman来渲染。另外还有一个高端解决方案就是mental ray渲染器,它也是电影级别的。

2、Mental Ray

大名鼎鼎的德国渲染器mental ray是一个专业的3D渲染引擎,专门用于**渲染,它可以生成令人难以置信的高质量真实感图像。Mental Ray是一款可以和Render Man相抗衡的电影级渲染器。它在电影领域得到了广泛的应用和认可。在好莱坞Mental Ray参与制作的电影也非常多。

3、Arnold阿诺德渲染器

Arnold渲染器是一款高级的、跨平台的、基于物理算法的电影级别渲染引擎,目前正在被越来越多的好莱坞电影公司以及工作室作为首席渲染器使用。有 Maya渲染插件、C4D渲染插件。

4、Brazil巴西渲染器

Brazil渲染器和上面几个不同,它是面向工业、船舶、珠宝设计、制图、多媒体领域的。它拥有强大的光线跟踪的折射和反射、全局光照、散焦等功能,渲染效果极其强大。

5、FinalRender

这个也是一个德国渲染器,它的渲染速度非常快,效果也很高,对于商业市场来说是非常合适的。FinalRender还提供了用于卡通渲染仿真的功能,可以说是全能的渲染器。相对其他渲染器来说,设置比较多些,在开始入门的时候可能觉得比较难理解。

6、VRay

VRay相对其他渲染器来说是“业余级”的,但VRay的渲染效果丝毫不逊色于别的渲染器。VR的特点是速度很快,学习起来也不难,因为其参数调节小,简单,所以很多无基础的人也会选择它。

二、cpu是怎么的工作原理

CPU的工作原理浅析

一个完整的微型计算机系统包括硬件系统和软件系统两大部分。计算机硬件是指组成一台计算机的各种物理装置,它们是由各种实在的器件所组成,是计算机进行工作的物质基础。计算机硬件系统中重要的组成部分是**处理器(CPU)。

(一)CPU的基本概念和组成

**处理器简称CPU(Central Processing Unit),它是计算机系统的核心,主要包括运算器和控制器两个部件。如果把计算机比作一个人,那么CPU就是心脏,其重要作用由此可见一斑。CPU的内部结构可以分为控制单元、逻辑单元和存储单元三大部分,三个部分相互协调,便可以进行分析,判断、运算并控制计算机各部分协调工作。

计算机发生的所有动作都是受CPU控制的。其中运算器主要完成各种算术运算(如加、减、乘、除)和逻辑运算(如逻辑加、逻辑乘和非运算);而控制器不具有运算功能,它只是读取各种指令,并对指令进行分析,作出相应的控制。通常,在CPU中还有若干个寄存器,它们可直接参与运算并存放运算的中间结果。

我们常说的CPU都是X86系列及兼容CPU,所谓X86指令集是美国Intel公司为其第一块16位CP U(i8086)专门开发的,美国IBM公司1981年推出的世界第一台PC机中的CPU— i8088(i8086简化版)使用的也是X86指令,同时电脑中为提高浮点数据处理能力而增加的X87芯片系列数学协处理器则另外使用X8 7指令,以后就将X86指令集和X87指令集统称为X86指令集。虽然随着CPU技术的不断发展,Intel陆续研制出更新型的i80386、i80486直到今天的PentiumⅢ系列,但为了保证电脑能继续运行以往开发的各类应用程序以保护和继承丰富的软件资源,Intel公司所生产的所有CPU仍然继续使用X86指令集。另外除Intel公司之外,AMD和Cyrix等厂家也相继生产出能使用X86指令集的CPU,由于这些CPU能运行所有的为Inte l CPU所开发的各种软件,所以电脑业内人士就将这些CPU列为Intel的CPU兼容产品。由于Intel X8 6系列及其兼容CPU都使用X86指令集,就形成了今天庞大的X86系列及兼容CPU阵容。

(二)CPU主要技术参数

CPU品质的高低直接决定了一个计算机系统的档次,而 CPU的主要技术特性可以反映出CPU的大致性能。

CPU可以同时处理的二进制数据的位数是其重要的一个品质标志。人们通常所说的16位机、32位机就是指该微机中的C PU可以同时处理16位、32位的二进制数据。早期有代表性的IBM PC/XT、IBM PC/AT与 286机是16位机,386机和486机是32位机,586机则是64位的高档微机。

CPU按照其处理信息的字长可以分为:八位微处理器、十六位微处理器、三十二位微处理器以及六十四位微处理器等。

位:在数字电路和电脑技术中采用二进制,代码只有“0”和“1”,其中无论是“0”或是“1”在CPU中都是一“位”。

字节和字长:电脑技术中对CPU在单位时间内(同一时间)能一次处理的二进制数的位数叫字长。所以能处理字长为8位数据的CPU通常就叫8位的CPU。同理32位的CPU就能在单位时间内处理字长为32位的二进制数据。由于常用的英文字符用8位二进制就可以表示,所以通常就将8位称为一个字节。字节的长度是不固定的,对于不同的CPU、字长的长度也不一样。8位的CPU一次只能处理一个宇节,而32位的CPU一次就能处理4个宇节,同理字长为64位的 C PU一次可以处理8个字节。

2、CPU外频

CPU外频也就是常见特性表中所列的CPU总线频率,是由主板为CPU提供的基准时钟频率,而CPU的工作主频则按倍频系数乘以外频而来。在Pentium时代, CPU的外频一般是60/66MHz,从Pentium II 350开始,CPU外频提高到1O0MHz。由于正常情况下CPU总线频率和内存总线频率相同,所以当CPU外频提高后,与内存之间的交换速度也相应得到了提高,对提高电脑整体运行速度影响较大。

3、前端总线(FSB)频率

前端总线也就是以前所说的CPU总线,由于在目前的各种主板上前端总线频率与内存总线频率相同,所以也是 CPU与内存以及L2 Cache(仅指Socket 7主板)之间交换数据的工作时钟。由于数据传输大带宽取决所同时传输的数据位宽度和传输频率,即数据带宽=(总线频率(数据宽度)/8。例如Intel公司的PⅡ 333使用6 6MHz的前端总线,所以它与内存之间的数据交换带宽为528MB/s=(66×64)/8,而其PⅡ 350则使用100MHz的前端总线,所以其数据交换峰值带宽为800MB/s=(100×64)/8。由此可见前端总线速率将影响电脑运行时CPU与内存、(L2 Cache)之间的数据交换速度,实际也就影响了电脑的整体运行速度。因此目前 Intel正开始将其PⅢ的前端总线频率从100MHz向133MHz过渡。 AMD公司新推出的K7虽然使用20 0MHz的前端总线频率,但有资料表明K7 CPU内核与内存之间数据交换时钟仍然是100MHz,主频也是以100 MHz为基频倍频的。

4、CPU主频

CPU主频也叫工作频率,是CPU内核(整数和浮点运算器)电路的实际运行频率。在486 DX2 CPU之前。CPU的主频与外频相等。从486DX2开始,基本上所有的CPU主频都等于“外频乘上倍频系数”了。CPU的主要技术特征。主频是CPU内核运行时的时钟频率,主频的高低直接影响CPU的运算速度。

我们知道仅Pentium就可以在一个时钟周期内执行两条运算指令,假如主频为100MHz的Penti um可以在1秒钟内执行2亿条指令,那么主频为200MHz的Pentium每秒钟就能执行4亿条指令,因此CPU主频越高,电脑运行速度就越快。

需要说明的是Cyrix的CPU对主频这项指标是采用PR性能等级参数(Performance Rat ing)来标称的,表示此时CPU性能相当于Intel某主频CPU的性能。用PR参数标称的CPU实际运行时钟频率与标称主频并不一致。例如MⅡ-300的实际运行频率为233MHz(66×3.5),但PR参数主频标为300MH z,意思就是MⅡ-300相当于Intel的PⅡ-300。不过事实上也仅是MⅡ-300的Business Win ston指标(整数性能)能与PⅡ-300相当而已。

5、L1和L2 Cache的容量和速率

L1和L2 Cache的容量和工作速率对提高电脑速度起关键作用,尤其是L2 Cache对提高运行2 D图形处理较多的商业软件速度有显著作用。

设置L2 Cache是486时**始的,目的是弥补L1 Cache(一级高速缓存)容量的不足,以大程度地减小主内存对CPU运行造成的延缓。

CPU的L2 Cache分芯片内部和外部两种。设在CPU芯片内的L2 Cache运行速度与主频相同,而采用PⅡ方式安装在CPU芯片外部的L2 Cache运行频率一般为主频的二分之一,因此其效率要比芯片内的L2 Cache要低,这就是赛扬只有128KB片内Cache但性能却几乎超过同主频PⅡ(有512KB但工作时钟为主频一半的片外L2Cache)的重要原因。

(三)CPU主要技术术语浅析

1、流水线技术

流水线(pipeline)是 InteI首次在486芯片中开始使用的。流水线的工作方式就象工业生产上的装配流水线。在CPU中由5~6个不同功能的电路单元组成一条指令处理流水线,然后将一条X86指令分成5~6步后再由这些电路单元分别执行,这样就能实现在一个CPU时钟周期完成一条指令,因此提高CPU的运算速度。由于486CP U只有一条流水线,通过流水线中取指令、译码、产生地址、执行指令和数据写回五个电路单元分别同时执行那些已经分成五步的指令,因此实现了486CPU设计人员预期的在每个时钟周期中完成一条指令的目的(按笔者看法,CPU实际上应该是从第五个时钟周期才达到每周期能完成一条指令的处理速度)。到了Pentium时代、设计人员在CPU中设置了两条具有各自独立电路单元的流水线,因此这样CPU在工作时就可以通过这两条流水线来同时执行两条指令,因此在理论上可以实现在每一个时钟周期中完成两条指令的目的。

2、超流水线和超标量技术

超流水线是指某些CPU内部的流水线超过通常的5~6步以上,例如Pentium pro的流水线就长达14步。将流水线设计的步(级)数越多,其完成一条指令的速度越快,因此才能适应工作主频更高的CPU。超标量(supe rscalar)是指在 CPU中有一条以上的流水线,并且每时钟周期内可以完成一条以上的指令,这种设计就叫超标量技术。

3、*序执行技术

*序执行(out-of-orderexecution)是指CPU采用了允许将多条指令不按程序规定的顺序分开发送给各相应电路单元处理的技术。比方说程序某一段有7条指令,此时CPU将根据各单元电路的空闹状态和各指令能否提前执行的具体情况分析后,将能提前执行的指令立即发送给相应电路执行。当然在各单元不按规定顺序执行完指令后还必须由相应电路再将运算结果重新按原来程序指定的指令顺序排列后才能返回程序。这种将各条指令不按顺序拆散后执行的运行方式就叫*序执行(也有叫错序执行)技术。采用*序执行技术的目的是为了使CPU内部电路满负荷运转并相应提高了CP U的运行程序的速度。

4、分技预溯和推测执行技术

分枝预测(branch prediction)和推测执行(speculatlon execution)是CPU动态执行技术中的主要内容,动态执行是目前CPU主要采用的先进技术之一。采用分枝预测和动态执行的主要目的是为了提高CPU的运算速度。推测执行是依托于分枝预测基础上的,在分枝预测程序是否分枝后所进行的处理也就是推测执行。

5、指令特殊扩展技术

自简单的计算机开始,指令序列便能取得运算对象,并对它们执行计算。对大多数计算机而言,这些指令同时只能执行一次计算。如需完成一些并行*作,就要连续执行多次计算。此类计算机采用的是“单指令单数据”(SISD)处理器。在介绍CPU性能中还经常提到“扩展指令”或“特殊扩展”一说,这都是指该CPU是否具有对X86指令集进行指令扩展而言。扩展指令中早出现的是InteI公司自己的“MMX”,其次是AMD公司的“3D Now!”,后是近的Pentium III中的“SSE”。

MMX和SSE:MMX是英语“多媒体指令集”的缩写。共有57条指令,是Intel公司第一次对自1985年就定型的 X86指令集进行的扩展。MMX主要用于增强CPU对多媒体信息的处理,提高CPU处理3D图形、视频和音频信息能力。但由于只对整数运算进行了优化而没有加强浮点方面的运算能力。所以在3D图形日趋广泛,因特网3D网页应用日趋增多的情况下,MMX已心有余而力不足了。MMX指令可对整数执行SIMD运算,比如-40、0、1、469或32766等等;SSE指令则增加了对浮点数的SIMD运算能力,比如-40.2337,1.4355或87734 3226.012等等。利用MMX和SSE,一条指令可对2个以上的数据流执行计算。就前面的例子来说,再也不必每秒执行529000条指令了,只需执行264600条即可。因为同样的指令可同时对左、右声道发生作用。显示时,每秒也不需要70778880条指令,只需23592960条,因为红、绿、蓝通道均可用相同的指令控制。

SSE:SSE是英语“因特网数据流单指令序列扩展/Internet Streaming SIMDExt ensions”的缩写。它是InteI公司首次应用于 Pentium III中的。实际就是原来传闻的MMX2以后来又叫KNI(Katmai NewInstruction), Katmai实际上也就是现在的Pentium III。SSE共有70条指令,不但涵括了原MMX和3D Now!指令集中的所有功能,而且特别加强了SIMD浮点处理能力,另外还专门针对目前因特网的日益发展,加强了CPU处理3D网页和其它音、象信息技术处理的能力。CPU具有特殊扩展指令集后还必须在应用程序的相应支持下才能发挥作用,因此,当目前先进的Penthm III 450和 Pentium II 450运行同样没有扩展指令支持的应用程序时,它们之间的速度区别并不大。

SSE除保持原有的MMX指令外,又新增了70条指令,在加快浮点运算的同时,也改善了内存的使用效率,使内存速度显得更快一些。对游戏性能的改善十分显著,按Intel的说法,SSE对下述几个领域的影响特别明显:3D几何运算及动画处理;图形处理(如Photoshop);视频编辑/压缩/解压(如MPEG和DVD);语音识别;以及声音压缩和合成等。

3D NOW!:AMD公司开发的多媒体扩展指令集,共有27条指令,针对MMX指令集没有加强浮点处理能力的弱点,重点提高了AMD公司K6系列CPU对3D图形的处理能力,但由于指令有限,该指令集主要应用于3D游戏,而对其他商业图形应用处理支持不足。

(四) CPU的生产工艺及产品构架

1、CPU的生产工艺

表明CPU性能的参数中常有“工艺技术”一项,其中有“0.35um”或“0.25um”等。一般来说“工艺技术”中的数据越小表明CPU生产技术越先进。目前生产CPU主要采用CMOS技术。CMOS是英语“互补金属氧化物半导体”的缩写。采用这种技术生产CPU时过程中采用“光刀”加工各种电路和元器件,并采用金属铝沉淀在硅材料上后用“光刀”刻成导线联接各元器件。现在光刻的精度一般用微米(um)表示,精度越高表示生产工艺越先进。因为精度越高则可以在同样体积上的硅材料上生产出更多的元件,所加工出的联接线也越细,这样生产出的CPU工作主频可以做得很高。正因为如此,在只能使用0.65 u m工艺时生产的第一代Pentium CPU的工作主频只有60/66MHz,在随后生产工艺逐渐发展到0.35um、0.25um时、所以也相应生产出了工作主额高达266MHz的Pentium MMX和主频高达500MHz的Pentium II CPU。由于目前科学技术的限制,现在的CPU生产工艺只能达到0.25 u m,因此Intel、AMD、 Cyrix以及其它公司正在向0.18um和铜导线(用金属铜沉淀在硅材料上代替原来的铝)技术努力,估计只要生产工艺达到0.18um后生产出主频为l000MHz的CPU就会是很平常的事了。

AMD为了跟Intel继续争夺下个世纪的微处理器发展权,已经跟摩托罗拉(Motorola)达成一项长达七年的技术合作协议。Motorola将把新开发的铜导线工艺技术(Copper Interconnect)授权给AMD。AMD准备在2000年之内,制造高达1000MHz(1GHz)的K7微处理器。CPU将向速度更快、64位结构方向前进。CPU的制作工艺将更加精细,将会由现在0.25微米向0.18微米过渡,到2000年中大部分CPU厂商都将采用0.18微米工艺,2001年之后,许多厂商都将转向0.13微米的铜制造工艺,制造工艺的提高,味着体积更小,集成度更高,耗电更少。铜技术的优势非常明显。主要表现在以下方面:铜的导电性能优于现在普遍应用的铝,而且铜的电阻小,发热量小,从而可以保证处理器在更大范围内的可靠性;采用0.13微米以下及铜工艺芯片制造技术将有效的提高芯片的工作频率;能减小现有管芯的体积。与传统的铝工艺技术相比,铜工艺制造芯片技术将有效地提高芯片的速度,减小芯片的面积,从发展来看铜工艺将终取代铝工艺。

各厂家所生产的每一种CPU都有名称(商标名)、代号(研制代号)和标志(专用图案)。其中In tel公司的早期产品以i80x86命名,即以前的286、386、486等,到Intel开发出第5代产品586时由于商标注册上的麻烦改为Pentium并同时为其注册中文商标名“奔腾”,由此也就有了后来的Pentium Pr o(高能奔腾)、PentiumⅡ(奔腾2代)、PentiumⅢ(奔腾3代)以及Celeron(赛扬),目前名称并不能反映出同类型中CPU的规格,这点将从Intel正式推出前端总线为133MHz的PⅢ后开始改进,以后只要看见CPU的名称就可以了解这块CPU的大致技术特性。

另外厂家对每一种CPU包括同名但技术规格不同的产品都另有一个研制代号,例如Intel公司使用0.3 5和0.25工艺生产的PⅡ就各有一个代号分别为:Klamath和Destrutes。同时Itel每一种名称的C PU都有还一个专用商标图案作为标志。AMD和Cyrix公司的情况与Intel相近,它们的每一种CPU也都有一个名称、代号和标志,但都还没有正式的中文名称。

2、CPU的内部结构

当前我们使用的CPU内部结构实际可分为单总线和双总线两种结构,由于CPU内部结构特征决定CPU的封装形式和安装规范,所以在此作些简单的介绍。

在Intel公司研制出Pentium Pro之前,各种486以上CPU,如经典Pentium内部由主处理器、数学协处理器、控制器、各种寄存器和L1 Cache组成。至今为止仍然有大量的CPU继续以这种内部结构模式进行生产,例如AMD的K6-2、Cyrix的MⅡ以及IDT-C6等CPU。从P6(Pen-tium Pr o的研制代号)起,Intel为进一步提高CPU与L2 Cache间的数据交换速度,将原来设置在电脑主板上的高速缓存控制电路和L2 Cache(二级高速缓存)采用在同一块硅材料上制作的方法集成到CPU芯片上,这样CPU内核与高速缓存之间的数据交换就无需经过外部总线而直接通过CPU内部的缓存总线进行,由于CPU内核与内存和CPU与高速缓存之间的数据交换通道分离而形成首创的P6双总线架构模式(见图1)。从Pentium Pro的实际应用效果看这一技术措施非常成功,是CPU研制技术上的一次重大改进。由于P6双总线结构的优越性,因此凡是内部具有L2 C ache和高速缓存控制器的CPU都由传统的单总线模式过渡到双总线模式,例如Intel公司的PⅡ、新赛扬和PⅢ;AMD公司的K6-Ⅲ和K7等。

3、CPU的构架和封装方式

CPU架构是按CPU的安装插座类型和规格确定的。目前常用的CPU按其安装插座规范可分为Socket x和Slotx两大架构。

其中Socket x架构CPU中又分Socket 7和Socket 370两种,分别使用321针的So cket 7和370针的Socket370插座进行安装。Socket 7和Socket 370插座在外形上非常相似尺寸也相同,但Socket 370插座上比Socket7多了一圈针插孔。在Slot x架构CPU中可分为S lot 1、Slot 2和Slot A三种,分别使用对应规格的Slot槽进行安装。其中Slot 1和Slot A都是242线插槽,但在机械和电气标准上都不相同,所以互不兼容。Slot 2是尺寸较大的插槽,专门用于安装PⅡ和PⅢ序列中的Xeon。Xeon是一种专用于工作组服务器上的CPU。

封装是CPU生产过程中的后一道工序,封装是采用特定的材料将CPU芯片或CPU模块固化在其中以防损坏的保护措施,一般必须在封装后CPU才能交付用户使用。

CPU的封装方式取决于CPU安装形式和器件集成设计,通常采用Socket插座进行安装的CPU只能使用PGA(栅格阵列)方式封装,而采用Slot x槽安装的CPU则全部采用SEC(单边接插盒)的形式封装。目前采用PGA封装的CPU主要有Intel公司的赛扬,AMD的K6-2、K6-Ⅲ和Cyrix公司的MⅡ,以前赛扬曾采用SEC封装,现已逐渐全部改用PGA封装(见图4)。采用SEC封装的CPU有Intel的PⅡ、PⅢ和AM D公司的K7。其中Intel的Slot架构CPU实际上分别使用SEPP、SECC和SECC2三种单边接插盒进行封装。

以上CPU中虽然赛扬和K6-Ⅲ内部分别集成了128KB和256KB的L2 Cache和高速缓存控制器,但由于它们是采用在同一片硅材料上一次制造出CPU内核和L2 Cache、高速缓存控制器的方法制造,所以它们的体积较小并能采用PGA方式进行封装。不过赛扬采用PGA封装的主要原因是降低生产成本,而K6-Ⅲ采用PGA封装的主要原因则是因为Intel对其开发的Slot 1、Slot 2和Socket 370插座进行专利保护,所以A MD只能沿用Socket 7架构和采用PGA封装方式生产K6-Ⅲ。

目前Slot架构的CPU有两种制造方法,一是将分别制造的CPU内核芯片、高速Cache控制器芯片和 L2 Cache芯片安装在一块PCB(电路板)上,然后再安装上单边接插盒和风扇以完成CPU的终制作。采用这类结构和方法制作的CPU有Intel的PⅡ、PⅢ和AMD的K7。二是将完整的CPU(内含CPU内核、高速Cach e控制器芯片和L2Cache芯片)芯片安装在电路板上,此时电路板纯粹只起Slot接口的安装作用。后同样再安装单边接插盒和风扇也就形成完整的CPU。采用这种结构和方法制作的CPU只有Intel公司的部分赛扬。

三、中断工作原理

中断工作原理:计算技术里中断过程,就是主芯片的外部信号或内部信号,中断了该芯片正在执行的程序,主芯片转而处理由该信号引发的其他程序,结束后再回到中断的“断点”,继续执行原有程序。

二、什么是硬中断?

显然,外围硬件发给CPU或者内存的异步信号就是硬中断信号。简言之:外设对CPU的中断

三、什么是软中断?

由软件本身发给*作系统内核的中断信号,称之为软中断。通常是由硬中断处理程序或进程调度程序对*作系统内核的中断,也就是我们常说的系统调用(System Call)了。

四、硬中断与软中断之区别与联系

1.硬中断是有外设硬件发出的,需要有中断控制器之参与。其过程是外设侦测到变化,告知中断控制器,中断控制器通过CPU或内存的中断脚通知CPU,然后硬件进行程序计数器及堆栈寄存器之现场保存工作(引发上下文切换),并根据中断向量调用硬中断处理程序进行中断处理。

2.软中断则通常是由硬中断处理程序或者进程调度程序等软件程序发出的中断信号,无需中断控制器之参与,直接以一个CPU指令之形式指示CPU进行程序计数器及堆栈寄存器之现场保存工作(亦会引发上下文切换),并调用相应的软中断处理程序进行中断处理(即我们通常所言之系统调用)。

3.硬中断直接以硬件的方式引发,处理速度快。软中断以软件指令之方式适合于对响应速度要求不是特别严格的场景。

4.硬中断通过设置CPU的屏蔽位可进行屏蔽,软中断则由于是指令之方式给出,不能屏蔽。

5.硬中断发生后,通常会在硬中断处理程序中调用一个软中断来进行后续工作的处理。

6.硬中断和软中断均会引起上下文切换(进程/线程之切换),进程切换的过程是差不多的

相关文章

创维电视75A3怎么样

创维电视75A3怎么样

很多小伙伴在关注创维电视75A3怎么样?质量好不好?使用测评如何?本文综合已购用户的客观使用分享和相应的优惠信息,为大家推荐一款高性价比的产品,一起来看看吧。...

Vidda50V1F-R图文测评

Vidda50V1F-R图文测评

很多小伙伴在关注Vidda50V1F-R怎么样?质量好不好?使用测评如何?本文综合已购用户的客观使用分享和相应的优惠信息,为大家推荐一款高性价比的产品,一起来看看吧。...

阿尔法蛋超能蛋智能机器人中英学习启蒙早教机好不好用

阿尔法蛋超能蛋智能机器人中英学习启蒙早教机好不好用

很多小伙伴在关注阿尔法蛋超能蛋智能机器人中英学习启蒙早教机怎么样?质量好不好?使用测评如何?本文综合已购用户的客观使用分享和相应的优惠信息,为大家推荐一款高性价比的产品,一...

MAXCAM适用dji大疆灵眸OSMOPOCKET怎么样

MAXCAM适用dji大疆灵眸OSMOPOCKET怎么样

很多小伙伴在关注MAXCAM适用dji大疆灵眸OSMOPOCKET怎么样?质量好不好?使用测评如何?本文综合已购用户的客观使用分享和相应的优惠信息,为大家推荐一款高性价比的...

先科(SAST)V30红收音机老人老年人充电插卡迷你小音箱便携式半导体随身听fm调频广播音响音乐播放器使用心得反馈

先科(SAST)V30红收音机老人老年人充电插卡迷你小音箱便携式半导体随身听fm调频广播音响音乐播放器使用心得反馈

很多小伙伴在关注先科(SAST)V30红收音机老人老年人充电插卡迷你小音箱便携式半导体随身听fm调频广播音响音乐播放器怎么样?质量好不好?使用测评如何?本文综合已购用户的客...

正浩EcoFlow【磷酸铁锂】快充移动户外电源220V使用感受如何

正浩EcoFlow【磷酸铁锂】快充移动户外电源220V使用感受如何

很多小伙伴在关注正浩EcoFlow【磷酸铁锂】快充移动户外电源220V怎么样?质量好不好?使用测评如何?本文综合已购用户的客观使用分享和相应的优惠信息,为大家推荐一款高性价...