相变存储器 gst(相变存储器的工作原理)
一、相变存储器的工作原理
相变存储器(PCM)是一种非易失存储设备,它利用材料的可逆转的相变来存储信息。同一物质可以在诸如固体、液体、气体、冷凝物和等离子体等状态下存在,这些状态都称为相。相变存储器便是利用特殊材料在不同相间的电阻差异进行工作的。
在非晶态下,GST材料具有短距离的原子能级和较低的自由电子密度,使得其具有较高的电阻率。由于这种状态通常出现在RESET*作之后,一般称其为RESET状态,在RESET*作中DUT的温度上升到略高于熔点温度,然后突然对GST淬火将其冷却。冷却的速度对于非晶层的形成至关重要。非晶层的电阻通常可超过1兆欧。
在晶态下,GST材料具有长距离的原子能级和较高的自由电子密度,从而具有较低的电阻率。由于这种状态通常出现在SET*作之后,我们一般称其为SET状态,在SET*作中,材料的温度上升高于再结晶温度但是低于熔点温度,然后缓慢冷却使得晶粒形成整层。晶态的电阻范围通常从1千欧到10千欧。晶态是一种低能态;因此,当对非晶态下的材料加热,温度接近结晶温度时,它就会自然地转变为晶态。
典型的GST PCM器件结构顶部电极、晶态GST、α/晶态GST、热绝缘体、电阻(加热器)、底部电极组成。一个电阻连接在GST层的下方。加热/熔化过程只影响该电阻顶端周围的一小片区域。擦除/RESET脉冲施加高电阻即逻辑0,在器件上形成一片非晶层区域。擦除/RESET脉冲比写/SET脉冲要高、窄和陡峭。SET脉冲用于置逻辑1,使非晶层再结晶回到结晶态。
二、相变存储器的发展历史
二十世纪五十年代至六十年代,Dr. Stanford Ovshinsky开始研究无定形物质的性质。
无定形物质是一类没有表现出确定、有序的结晶结构的物质。
1968年,他发现某些玻璃在变相时存在可逆的电阻系数变化。
1969年,他又发现激光在光学存储介质中的反射率会发生响应的变化。
1970年,他与他的妻子Dr. Iris Ovshinsky共同建立的能量转换装置(ECD)公司,发布了他们与Intel的Gordon Moore合作的结果。
1970年9月28日在Electronics发布的这一篇文章描述了世界上第一个256位半导体相变存储器。
近30年后,能量转换装置(ECD)公司与MicronTechnology前副主席Tyler Lowery建立了新的子公司Ovonyx。
在2000年2月,Intel与Ovonyx发表了合作与许可协议,此份协议是现代PCM研究与发展的开端。
2000年12月,STMicroelectronics(ST)也与Ovonyx开始合作。
至2003年,以上三家公司将力量集中,避免重复进行基础的、竞争的研究与发展,避免重复进行延伸领域的研究,以加快此项技术的进展。
2005年,ST与Intel发表了它们建立新的闪存公司的意图,新公司名为Numonyx。
在1970年第一份产品问世以后的几年中,半导体制作工艺有了很大的进展,这促进了半导体相变存储器的发展。
同时期,相变材料也愈加完善以满足在可重复写入的CD与DVD中的大量使用。
Intel开发的相变存储器使用了硫属化物(Chalcogenides),这类材料包含元素周期表中的氧/硫族元素。
Numonyx的相变存储器使用一种含锗、锑、碲的合成材料(Ge2Sb2Te5),多被称为GST。
现今大多数公司在研究和发展相变存储器时都都使用GST或近似的相关合成材料。
大部分DVD-RAM都是使用与Numonyx相变存储器使用的相同的材料。
2011年8月31日,中国首次完成第一批基于相变存储器的产品芯片。
2015年,《自然·光子学》杂志布了世界上第一个或可长期存储数据且完全基于光的相变存储器。