滤波器参数计算的特点?数字滤波器的特点
一、数字滤波器的特点
IIR数字滤波器的通用的方法是借助于模拟滤波器的设计方法。模拟滤波器设计已经有了相当成熟的技术和方法,有完整的设计公式,还有比较完整的图表可以查询,因此设计数字滤波器可以充分利用这些丰富的资源来进行。
对于IIR数字滤波器的设计具体步骤如下:
(1)按照一定的规则将给出的数字滤波器的技术指标转换为模拟低通滤波器的技术指标。
(2)根据转换后的技术指标设计模拟低通滤波器G(s)(G(s)是低通滤波器的传递函数)。
(3)再按照一定的规则将G(s)转换成H(z)(H(z)是数字滤波器的传递函数)。若设计的数字滤波器是低通的,上述的过程可以结束,若设计的是高通、带通或者是带阻滤波器,那么还需要下面的步骤:
将高通、带通或带阻数字滤波器的技术指标转换为低通模拟滤波器的技术指标,然后设计出低通G(s),再将G(s)转换为H(z)。
IIR数字滤波器的系统函数可以写成封闭函数的形式。
IIR数字滤波器采用递归型结构,即结构上带有反馈环路。IIR滤波器运算结构通常由延时、乘以系数和相加等基本运算组成,可以组合成直接型、正准型、级联型、并联型四种结构形式,都具有反馈回路。由于运算中的舍入处理,使误差不断累积,有时会产生微弱的寄生振荡。
IIR数字滤波器在设计上可以借助成熟的模拟滤波器的成果,如巴特沃斯、契比雪夫和椭圆滤波器等,有现成的设计数据或图表可查,其设计工作量比较小,对计算工具的要求不高。在设计一个IIR数字滤波器时,我们根据指标先写出模拟滤波器的公式,然后通过一定的变换,将模拟滤波器的公式转换成数字滤波器的公式。
IIR数字滤波器的相位特性不好控制,对相位要求较高时,需加相位校准网络。
在MATLAB下设计IIR滤波器可使用Butterworth函数设计出巴特沃斯滤波器,使用Cheby1函数设计出契比雪夫I型滤波器,使用Cheby2设计出契比雪夫II型滤波器,使用ellipord函数设计出椭圆滤波器。下面主要介绍前两个函数的使用。
与FIR滤波器的设计不同,IIR滤波器设计时的阶数不是由设计者指定,而是根据设计者输入的各个滤波器参数(截止频率、通带滤纹、阻带衰减等),由软件设计出满足这些参数的低滤波器阶数。在MATLAB下设计不同类型IIR滤波器均有与之对应的函数用于阶数的选择。
IIR单位响应为无限脉冲序列FIR单位响应为有限的
IIR幅频特性精度很高,不是线性相位的,可以应用于对相位信息不敏感的音频信号上;
FIR幅频特性精度较之于iir低,但是线性相位,就是不同频率分量的信号经过FIR滤波器后他们的时间差不变。这是很好的性质。
另外有限的单位响应也有利于对数字信号的处理,便于编程,用于计算的时延也小,这对实时的信号处理很重要。
二、信号滤波器原理是什么
一、滤波器是一种选频装置,可以使信号中特定的频率成分通过,而极大地衰减其它频率成分。在测试装置中,利用滤波器的这种选频作用,可以滤除干扰噪声或进行频谱分析。
广义地讲,任何一种信息传输的通道(媒质)都可视为是一种滤波器。因为,任何装置的响应特性都是激励频率的函数,都可用频域函数描述其传输特性。因此,构成测试系统的任何一个环节,诸如机械系统、电气网络、仪器仪表甚至连接导线等等,都将在一定频率范围内,按其频域特性,对所通过的信号进行变换与处理。
本节所述内容属于模拟滤波范围。主要介绍模拟滤波器原理、种类、数学模型、主要参数、RC滤波器设计。尽管数字滤波技术已得到广泛应用,但模拟滤波在自动检测、自动控制以及电子测量仪器中仍被广泛应用。
二、滤波器分类
1、根据滤波器的选频作用分类
⑴低通滤波器
从0~f2频率之间,幅频特性平直,它可以使信号中低于f2的频率成分几乎不受衰减地通过,而高于f2的频率成分受到极大地衰减。
⑵高通滤波器
与低通滤波相反,从频率f1~∞,其幅频特性平直。它使信号中高于f1的频率成分几乎不受衰减地通过,而低于f1的频率成分将受到极大地衰减。
⑶带通滤波器
它的通频带在f1~f2之间。它使信号中高于f1而低于f2的频率成分可以不受衰减地通过,而其它成分受到衰减。
⑷带阻滤波器
与带通滤波相反,阻带在频率f1~f2之间。它使信号中高于f1而低于f2的频率成分受到衰减,其余频率成分的信号几乎不受衰减地通过.
低通滤波器和高通滤波器是滤波器的两种基本的形式,其它的滤波器都可以分解为这两种类型的滤波器,例如:低通滤波器与高通滤波器的串联为带通滤波器,低通滤波器与高通滤波器的并联为带阻滤波器。
⒉根据“佳逼近特性”标准分类
⑴巴特沃斯滤波器
从幅频特性提出要求,而不考虑相频特性。巴特沃斯滤波器具有大平坦幅度特性,其幅频响应表达式为:
⑵切比雪夫滤波器
切贝雪夫滤波器也是从幅频特性方面提出逼近要求的,其幅频响应表达式为:ε是决定通带波纹大小的系数,波纹的产生是由于实际滤波网络中含有电抗元件;Tn是第一类切贝雪夫多项式。
与巴特沃斯逼近特性相比较,这种特性虽然在通带内有起伏,但对同样的n值在进入阻带以后衰减更陡峭,更接近理想情况。ε值越小,通带起伏越小,截止频率点衰减的分贝值也越小,但进入阻带后衰减特性变化缓慢。切贝雪夫滤波器与巴特沃斯滤波器进行比较,切贝雪夫滤波器的通带有波纹,过渡带轻陡直,因此,在不允许通带内有纹波的情况下,巴特沃斯型更可取;从相频响应来看,巴特沃斯型要优于切贝雪夫型,通过上面二图比较可以看出,前者的相频响应更接近于直线。
⑶贝塞尔滤波器
只满足相频特性而不关心幅频特性。贝塞尔滤波器又称平时延或恒时延滤波器。其相移和频率成正比,即为一线性关系。但是由于它的幅频特性欠佳,而往往限制了它的应用。
三、理想滤波器
理想滤波器是指能使通带内信号的幅值和相位都不失真,阻带内的频率成分都衰减为零的滤波器,其通带和阻带之间有明显的分界线。也就是说,理想滤波器在通带内的幅频特性应为常数,相频特性的斜率为常值;在通带外的幅频特性应为零。
理想低通滤波器的频率响应函数为:其幅频及相频特性曲线为:分析上式所表示的频率特性可知,该滤波器在时域内的脉冲响应函数 h(t)为 sinc函数,图形如下图所示。脉冲响应的波形沿横坐标左、右无限延伸,从图中可以看出,在t=0时刻单位脉冲输入滤波器之前,即在t<0时,滤波器就已经有响应了。显然,这是一种非因果关系,在物理上是不能实现的。这说明在截止频率处呈现直角锐变的幅频特性,或者说在频域内用矩形窗函数描述的理想滤波器是不可能存在的。实际滤波器的频域图形不会在某个频率上完全截止,而会逐渐衰减并延伸到∞。
四、实际滤波器
⒈实际滤波器的基本参数
理想滤波器是不存在的,在实际滤波器的幅频特性图中,通带和阻带之间应没有严格的界限。在通带和阻带之间存在一个过渡带。在过渡带内的频率成分不会被完全抑制,只会受到不同程度的衰减。当然,希望过渡带越窄越好,也就是希望对通带外的频率成分衰减得越快、越多越好。因此,在设计实际滤波器时,总是通过各种方法使其尽量逼近理想滤波器。
如图所示为理想带通(虚线)和实际带通(实线)滤波器的幅频特性。由图中可见,理想滤波器的特性只需用截止频率描述,而实际滤波器的特性曲线无明显的转折点,两截止频率之间的幅频特性也非常数,故需用更多参数来描述。
⑴纹波幅度d
在一定频率范围内,实际滤波器的幅频特性可能呈波纹变化,其波动幅度d与幅频特性的平均值A0相比,越小越好,一般应远小于-3dB。
⑵截止频率fc
幅频特性值等于0.707A0所对应的频率称为滤波器的截止频率。以A0为参考值,0.707A0对应于-3dB点,即相对于A0衰减3dB。若以信号的幅值平方表示信号功率,则所对应的点正好是半功率点
⑶带宽B和品质因数Q值
上下两截止频率之间的频率范围称为滤波器带宽,或-3dB带宽,单位为Hz。带宽决定着滤波器分离信号中相邻频率成分的能力——频率分辨力。在电工学中,通常用Q代表谐振回路的品质因数。在二阶振荡环节中,Q值相当于谐振点的幅值增益系数, Q=1/2ξ(ξ——阻尼率)。对于带通滤波器,通常把中心频率f0()和带宽 B之比称为滤波器的品质因数Q。例如一个中心频率为500Hz的滤波器,若其中-3dB带宽为10Hz,则称其Q值为50。Q值越大,表明滤波器频率分辨力越高。
⑷倍频程选择性W
在两截止频率外侧,实际滤波器有一个过渡带,这个过渡带的幅频曲线倾斜程度表明了幅频特性衰减的快慢,它决定着滤波器对带宽外频率成分衰阻的能力。通常用倍频程选择性来表征。所谓倍频程选择性,是指在上截止频率fc2与 2fc2之间,或者在下截止频率fc1与fc1/2之间幅频特性的衰减值,即频率变化一个倍频程时的衰减量或倍频程衰减量以dB/oct表示(octave,倍频程)。显然,衰减越快(即W值越大),滤波器的选择性越好。对于远离截止频率的衰减率也可用10倍频程衰减数表示之。即[dB/10oct]。
⑸滤波器因数(或矩形系数)
滤波器因数是滤波器选择性的另一种表示方式,它是利用滤波器幅频特性的-60dB带宽与-3dB带宽的比值来衡量滤波器选择性,记作,即理想滤波器=1,常用滤波器=1-5,显然,越接近于1,滤波器选择性越好。
三、高斯滤波器特点,好的追加100分
高斯滤波器是一类根据高斯函数的形状来选择权值的线性平滑滤波器。高斯平滑滤波器对于抑制服从正态分布的噪声非常有效。一维零均值高斯函数为:
g(x)=exp(-x^2/(2 sigma^2)
其中,高斯分布参数Sigma决定了高斯函数的宽度。对于图像处理来说,常用二维零均值离散高斯函数作平滑滤波器。
高斯函数具有五个重要的性质,这些性质使得它在早期图像处理中特别有用.这些性质表明,高斯平滑滤波器无论在空间域还是在频率域都是十分有效的低通滤波器,且在实际图像处理中得到了工程人员的有效使用.高斯函数具有五个十分重要的性质,它们是:
(1)二维高斯函数具有旋转对称性,即滤波器在各个方向上的平滑程度是相同的.一般来说,一幅图像的边缘方向是事先不知道的,因此,在滤波前是无法确定一个方向上比另一方向上需要更多的平滑.旋转对称性意味着高斯平滑滤波器在后续边缘检测中不会偏向任一方向.
(2)高斯函数是单值函数.这表明,高斯滤波器用像素邻域的加权均值来代替该点的像素值,而每一邻域像素点权值是随该点与中心点的距离单调增减的.这一性质是很重要的,因为边缘是一种图像局部特征,如果平滑运算对离算子中心很远的像素点仍然有很大作用,则平滑运算会使图像失真.
(3)高斯函数的付立叶变换频谱是单瓣的.正如下面所示,这一性质是高斯函数付立叶变换等于高斯函数本身这一事实的直接推论.图像常被不希望的高频信号所污染(噪声和细纹理).而所希望的图像特征(如边缘),既含有低频分量,又含有高频分量.高斯函数付立叶变换的单瓣意味着平滑图像不会被不需要的高频信号所污染,同时保留了大部分所需信号.
(4)高斯滤波器宽度(决定着平滑程度)是由参数σ表征的,而且σ和平滑程度的关系是非常简单的.σ越大,高斯滤波器的频带就越宽,平滑程度就越好.通过调节平滑程度参数σ,可在图像特征过分模糊(过平滑)与平滑图像中由于噪声和细纹理所引起的过多的不希望突变量(欠平滑)之间取得折衷.
(5)由于高斯函数的可分离性,较大尺寸的高斯滤波器可以得以有效地实现.二维高斯函数卷积可以分两步来进行,首先将图像与一维高斯函数进行卷积,然后将卷积结果与方向垂直的相同一维高斯函数卷积.因此,二维高斯滤波的计算量随滤波模板宽度成线性增长而不是成平方增长.