hive 参数设置 hive动态分区参数配置

seosqwseo4个月前 (09-19)测评日记42

一、Hive优化的十大方法

Hive用的好,才能从数据中挖掘出更多的信息来。用过hive的朋友,我想或多或少都有类似的经历:一天下来,没跑几次hive,就到下班时间了。Hive在极大数据或者数据不平衡等情况下,表现往往一般,因此也出现了presto、spark-sql等替代品。这里重点讲解hive的优化方式,例如

一.表连接优化

二.用insert into替换union all

如果union all的部分个数大于2,或者每个union部分数据量大,应该拆成多个insert into语句,实际测试过程中,执行时间能提升50%。示例参考如下:

可以改写为:

三. order by& sort by

order by:对查询结果进行全局排序消耗时间长,需要set hive.mapred.mode=nostrict

sort by:局部排序,并非全局有序,提高效率。

四. transform+python

一种嵌入在hive取数流程中的自定义函数,通过transform语句可以把在hive中不方便实现的功能在python中实现,然后写入hive表中。示例语法如下:

如果除python脚本外还有其它依赖资源,可以使用ADD ARVHIVE。

五. limit语句快速出结果

一般情况下,Limit语句还是需要执行整个查询语句,然后再返回部分结果。有一个配置属性可以开启,避免这种情况—对数据源进行抽样

缺点:有可能部分数据永远不会被处理到

六.本地模式

对于小数据集,为查询触发执行任务消耗的时间>实际执行job的时间,因此可以通过本地模式,在单台机器上(或某些时候在单个进程上)处理所有的任务。

可以通过设置属性hive.exec.mode.local.auto的值为true,来让Hive在适当的时候自动启动这个优化,也可以将这个配置写在$HOME/.hiverc文件中。

当一个job满足如下条件才能真正使用本地模式:

七.并行执行

Hive会将一个查询转化为一个或多个阶段,包括:MapReduce阶段、抽样阶段、合并阶段、limit阶段等。默认情况下,一次只执行一个阶段。不过,如果某些阶段不是互相依赖,是可以并行执行的。

会比较耗系统资源。

八.调整mapper和reducer的个数

假设input目录下有1个文件a,大小为780M,那么hadoop会将该文件a分隔成7个块(6个128m的块和1个12m的块),从而产生7个map数

假设input目录下有3个文件a,b,c,大小分别为10m,20m,130m,那么hadoop会分隔成4个块(10m,20m,128m,2m),从而产生4个map数。

即如果文件大于块大小(128m),那么会拆分,如果小于块大小,则把该文件当成一个块。

map执行时间:map任务启动和初始化的时间+逻辑处理的时间。

减少map数

若有大量小文件(小于128M),会产生多个map,处理方法是:

前面三个参数确定合并文件块的大小,大于文件块大小128m的,按照128m来分隔,小于128m,大于100m的,按照100m来分隔,把那些小于100m的(包括小文件和分隔大文件剩下的)进行合并。

set hive.input.format=org.apache.hadoop.hive.ql.io.Com**neHiveInputFormat;–执行前进行小文件合并。

增加map数

当input的文件都很大,任务逻辑复杂,map执行非常慢的时候,可以考虑增加Map数,来使得每个map处理的数据量减少,从而提高任务的执行效率。

set mapred.reduce.tasks=?

一般根据输入文件的总大小,用它的estimation函数来自动计算reduce的个数:reduce个数= InputFileSize/ bytes per reducer

九.严格模式

十.数据倾斜

表现:

任务进度长时间维持在99%(或100%),查看任务监控页面,发现只有少量(1个或几个)reduce子任务未完成。因为其处理的数据量和其他reduce差异过大。单一reduce的记录数与平均记录数差异过大,通常可能达到3倍甚至更多。长时长远大于平均时长。

原因:

解决方案:参数调节

二、怎么设置hive中map 个数

控制hive任务中的map数:

1.通常情况下,作业会通过input的目录产生一个或者多个map任务。

主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M,可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);

2.举例:

a)假设input目录下有1个文件a,大小为780M,那么hadoop会将该文件a分隔成7个块(6个128m的块和1个12m的块),从而产生7个map数

b)假设input目录下有3个文件a,b,c,大小分别为10m,20m,130m,那么hadoop会分隔成4个块(10m,20m,128m,2m),从而产生4个map数

即,如果文件大于块大小(128m),那么会拆分,如果小于块大小,则把该文件当成一个块。

3.是不是map数越多越好?

答案是否定的。如果一个任务有很多小文件(远远小于块大小128m),则每个小文件也会被当做一个块,用一个map任务来完成,

而一个map任务启动和初始化的时间远远大于逻辑处理的时间,就会造成很大的资源浪费。

而且,同时可执行的map数是受限的。

4.是不是保证每个map处理接近128m的文件块,就高枕无忧了?

答案也是不一定。比如有一个127m的文件,正常会用一个map去完成,但这个文件只有一个或者两个小字段,却有几千万的记录,

如果map处理的逻辑比较复杂,用一个map任务去做,肯定也比较耗时。

针对上面的问题3和4,我们需要采取两种方式来解决:即减少map数和增加map数;

如何合并小文件,减少map数?

假设一个SQL任务:

Select count(1) from popt_tbaccountcopy_mes where pt=‘2012-07-04’;

该任务的inputdir/group/p_sdo_data/p_sdo_data_etl/pt/popt_tbaccountcopy_mes/pt=2012-07-04

共有194个文件,其中很多是远远小于128m的小文件,总大小9G,正常执行会用194个map任务。

Map总共消耗的计算资源: SLOTS_MILLIS_MAPS= 623,020

我通过以下方法来在map执行前合并小文件,减少map数:

set mapred.max.split.size=100000000;

set mapred.min.split.size.per.node=100000000;

set mapred.min.split.size.per.rack=100000000;

set hive.input.format=org.apache.hadoop.hive.ql.io.Com**neHiveInputFormat;

再执行上面的语句,用了74个map任务,map消耗的计算资源:SLOTS_MILLIS_MAPS= 333,500

对于这个简单SQL任务,执行时间上可能差不多,但节省了一半的计算资源。

大概解释一下,100000000表示100M, set hive.input.format=org.apache.hadoop.hive.ql.io.Com**neHiveInputFormat;这个参数表示执行前进行小文件合并,

前面三个参数确定合并文件块的大小,大于文件块大小128m的,按照128m来分隔,小于128m,大于100m的,按照100m来分隔,把那些小于100m的(包括小文件和分隔大文件剩下的),

进行合并,终生成了74个块。

如何适当的增加map数?

当input的文件都很大,任务逻辑复杂,map执行非常慢的时候,可以考虑增加Map数,来使得每个map处理的数据量减少,从而提高任务的执行效率。

假设有这样一个任务:

Select data_desc,

count(1),

count(distinct id),

sum(case when…),

sum(case when...),

sum(…)

from a group by data_desc

如果表a只有一个文件,大小为120M,但包含几千万的记录,如果用1个map去完成这个任务,肯定是比较耗时的,这种情况下,我们要考虑将这一个文件合理的拆分成多个,

这样就可以用多个map任务去完成。

set mapred.reduce.tasks=10;

create table a_1 as

select* from a

distribute by rand(123);

这样会将a表的记录,随机的分散到包含10个文件的a_1表中,再用a_1代替上面sql中的a表,则会用10个map任务去完成。

每个map任务处理大于12M(几百万记录)的数据,效率肯定会好很多。

看上去,貌似这两种有些矛盾,一个是要合并小文件,一个是要把大文件拆成小文件,这点正是重点需要关注的地方,

根据实际情况,控制map数量需要遵循两个原则:使大数据量利用合适的map数;使单个map任务处理合适的数据量;

三、hive动态分区参数配置***利用sql怎么设置

静态分区SP(static partition)

动态分区DP(dynamic partition)

静态分区与动态分区的主要区别在于静态分区是手动指定,而动态分区是通过数据来进行判断。详细来说,静态分区的列实在编译时期,通过用户传递来决定的;动态分区只有在SQL执行时才能决定。

二)实战演示如何在Hive中使用动态分区

1、创建一张分区表,包含两个分区dt和ht表示日期和小时

[sql] view plain copy

CREATE TABLE partition_table001

(

name STRING,

ip STRING

)

PARTITIONED BY(dt STRING, ht STRING)

ROW FORMAT DELIMITED FIELDS TERMINATED BY"\t";

2、启用hive动态分区,只需要在hive会话中设置两个参数:

相关文章

小米(MI)游戏电视ESPro价格是多少

小米(MI)游戏电视ESPro价格是多少

很多小伙伴在关注小米(MI)游戏电视ESPro怎么样?质量好不好?使用测评如何?本文综合已购用户的客观使用分享和相应的优惠信息,为大家推荐一款高性价比的产品,一起来看看吧。...

小米电视55英寸EA55超高清4K金属全面屏内置小爱同学远场语音智能液晶平板电视机小米电视EA55英寸【AI远场语音】口碑怎么样

小米电视55英寸EA55超高清4K金属全面屏内置小爱同学远场语音智能液晶平板电视机小米电视EA55英寸【AI远场语音】口碑怎么样

很多小伙伴在关注小米电视55英寸EA55超高清4K金属全面屏内置小爱同学远场语音智能液晶平板电视机小米电视EA55英寸【AI远场语音】怎么样?质量好不好?使用测评如何?本文...

Vidda海信VIDDA32V1F-R32英寸测评分享

Vidda海信VIDDA32V1F-R32英寸测评分享

很多小伙伴在关注Vidda海信VIDDA32V1F-R32英寸怎么样?质量好不好?使用测评如何?本文综合已购用户的客观使用分享和相应的优惠信息,为大家推荐一款高性价比的产品...

Camorama凯眸4K全景运动摄像机车载支架测评怎么样

Camorama凯眸4K全景运动摄像机车载支架测评怎么样

很多小伙伴在关注Camorama凯眸4K全景运动摄像机车载支架怎么样?质量好不好?使用测评如何?本文综合已购用户的客观使用分享和相应的优惠信息,为大家推荐一款高性价比的产品...

荣耀手环7全天候血氧监测好不好

荣耀手环7全天候血氧监测好不好

很多小伙伴在关注荣耀手环7全天候血氧监测怎么样?质量好不好?使用测评如何?本文综合已购用户的客观使用分享和相应的优惠信息,为大家推荐一款高性价比的产品,一起来看看吧。...

正浩EcoFlow【磷酸铁锂】快充移动户外电源220V测评使用介绍

正浩EcoFlow【磷酸铁锂】快充移动户外电源220V测评使用介绍

很多小伙伴在关注正浩EcoFlow【磷酸铁锂】快充移动户外电源220V怎么样?质量好不好?使用测评如何?本文综合已购用户的客观使用分享和相应的优惠信息,为大家推荐一款高性价...