影响材料能的因素论文,影响材料强度的因素和提高强度的途径
一、FDM过程中对成型件质量的影响因素分析
【FDM过程中对成型件质量的影响因素分析】
1、材料性能的影响:材料性能的变化直接影响成形过程及成形件精度,材料在工艺过程中要经过固体熔体固体的2次相变,在凝固过程中,由材料的收缩而产生的应力变形会影响成形件精度。如ABS树脂,其收缩的因素主要有2点:
(1)热收缩。即材料因其固有的热膨胀率而产生的体积变化,它是收缩产生的主要原因。由热收缩引起的收缩量:
(2)分子取向的收缩。成形过程中,熔态的ABS分子在填充方向上被拉长,又在随后的冷却过程中产生收缩,而取向作用会使堆积丝在填充方向的收缩率大于与该方向垂直的方向的收缩率。
故而为了提高精度,就应减小材料的收缩率。这可通过改进材料的配方来实现,而基本的方法是在设计时考虑收缩量进行尺寸补偿。在目前的数据处理软件中,只能在X,Y,Z3个方向应用收缩补偿因子,即针对不同的零件形状和结构特征,根据经验采用不同的因子大小,这样零件成形时的尺寸实际上是略大于CAD模型的尺寸,当冷却凝固时,设想按照预定的收缩量,零件尺寸终收缩到CAD模型的尺寸。
2、喷头温度和成形室温度的影响:喷头温度决定了材料的粘结性能、堆积性能、丝材流量以及挤出丝宽度。喷头温度太低,则材料粘度加大,挤丝速度变慢,这不仅加重了挤压系统的负担,极端情况下还会造成喷嘴堵塞,而且材料层间粘结强度降低,还会引起层间剥离;而温度太高,材料偏向于液态,粘性系数变小,流动性强,挤出过快,无法形成可精确控制的丝,制作时会出现前一层材料还未冷却成形,后一层就加压于其上,从而使得前一层材料坍塌和破坏。因此,喷头温度应根据丝材的性质在一定范围内选择,以保证挤出的丝呈熔融流动状态。试验表明,对改性聚丙稀这种材料,喷嘴温度应控制在约230℃。
成形室的温度会影响到成形件的热应力大小,温度过高,虽然有助于减少热应力,但零件表面易起皱;而温度太低,从喷嘴挤出的丝骤冷使成形件热应力增加,容易引起零件翘曲变形,由于挤出丝冷却速度快,在前一层截面已完全冷却凝固后才开始堆积后一层,这会导致层间粘结不牢固,会有开裂的倾向。试验证明,为了顺利成形,应该把成形室的温度设定为比挤出丝的熔点温度低1~2℃。
3、挤出速度的影响:挤出速度是指喷头内熔融态的丝从喷嘴挤出速度,单位时间内挤出丝体积与挤出速度成正比。在与填充速度合理匹配范围内,随着挤出速度增大,挤出丝的截面宽度逐渐增加,当挤出速度增大到一定值,挤出的丝粘附于喷嘴外圆锥面,就不能正常加工。
4、填充速度与挤出速度交互的影响:填充速度应与挤出速度匹配,填充速度比挤出速度快,则材料填充不足,出现断丝现象,难以成形。相反,填充速度比挤出速度慢,熔丝堆积在喷头上,使成形面材料分布不均匀,表面会有疙瘩,影响造型质量。因此,填充速度与挤出速度之间应在一个合理的范围内匹配,应满足:
5、分层厚度的影响:分层厚度是指在成形过程中每层切片截面的厚度。由于每层有一定厚度,会在成形后的实体表面产生台阶的现象,这将直接影响成形后实体的尺寸误差和表面粗糙度。对FDM工艺而言,完全消除台阶现象是不可能的,一般来说,分层厚度越小,实体表面产生的台阶越小,表面质量也越高,但所需的分层处理和成形时间会变长,加工效率低。相反,分层厚度越大,实体表面产生的台阶也就越大,表面质量越差,不过加工效率则相对较高。为了提高成形精度,可在实体成形后进行打磨,抛光等后处理。
6、成形时间的影响:每层的成形时间与填充速度,该层的面积大小及形状的复杂度有关。若层的面积小,形状简单,填充速度快,则该层成形的时间就短;相反,时间就长。在加工时,控制好喷嘴的工作温度和每层的成形时间,才能获得精度较高的成形件。经过反复试验总结出:在加工一些截面很小的实体时,由于一层的成形时间太短,往往难以成形,因为前一层还来不及固化成形,下一层就接着再堆,将引起坍塌和拉丝的现象。为消除这种现象,除了要采用较小的填充速度,增加成形时间外,还应在当前成形面上吹冷风强制冷却,以加速材料固化速度,保证成形件的几何稳定性。而成形的面积很大时,则应选择较快的填充速度,以减少成形时间,这一方面能提高成形效率,另一方面还可减小成形件的开裂倾向,当成形时间太长时,前一层截面已完全冷却凝固,才开始堆积后一层,将会导致层间粘接不牢固。
二、影响材料强度的因素和提高强度的途径
如何提高材料的强度而不损失其塑性?这是众多材料科学家面临的一个重大挑战。近日,中科院金属所沈阳材料科学国家(联合)实验室研究员卢柯、卢磊与美国麻省理工学院教授S.Suresh合作完成了一种新的材料强化原理及途径
,即利用纳米尺度共格界面强化材料,这种方法可使金属材料强化的同时提高韧塑性。4月17日出版的《科学》发表特邀综述论文,详细阐述了这项研究成果。
据了解,提高材料的强度是几个世纪以来材料研究的核心问题。而迄今为止强化材料的途径可分为四类:固溶强化、第二相弥散强化、加工(或应变)强化和晶粒细化强化。这些强化技术的实质是通过引入各种缺陷(点缺陷,线、面及体缺陷等)阻碍位错运动,使材料难以产生塑性变形而提高强度。但材料强化的同时往往伴随着塑性或韧性的急剧下降,造成高强度材料往往缺乏塑性和韧性,而高塑韧性材料的强度往往很低。长期以来,这种材料的强韧性“倒置关系”成为材料领域的重大科学难题和制约材料发展的重要瓶颈。
专家表示,传统的材料强化技术多利用普通非共格晶界或相界阻碍位错运动来提高强度。当材料中引入大量非共格晶界时,强度显著提高(如纳米晶体材料的强度较粗晶体材料高一个数量级),但随着位错运动“阻碍物”(即非共格晶界)的不断增多,晶格位错运动受到严重阻碍甚至被完全抑制而不能协调塑性变形,因此材料变脆。
卢柯等人研究发现,纳米尺度孪晶界面具备强化界面的三个基本结构特征:(1)界面与基体之间具有晶体学共格关系;(2)界面具有良好的热稳定性和机械稳定性;(3)界面特征尺寸在纳米量级(<100nm)。他们利用脉冲电解沉积技术成功地在纯铜样品中制备出具有高密度纳米尺度的孪晶结构(孪晶层片厚度<100nm)。发现随孪晶层片厚度减小,样品的强度和拉伸塑性同步显著提高。当层片厚度为15nm时,拉伸屈服强度接近1.0GPa(是普通粗晶Cu的10倍以上),拉伸均匀延伸率可达13%。显然,这种使强度和塑性同步提高的纳米孪晶强化与其他传统强化技术截然不同。理论分析和分子动力学模拟表明,高密度孪晶材料表现出的超高强度和高塑性源于纳米尺度孪晶界与位错的独特相互作用。同时,利用纳米尺度孪晶不但使金属材料强化,还提高了其韧塑性。
据了解,材料中纳米尺度孪晶界可以通过多种制备技术获得。研究表明,沉积速率越快形成的孪晶层片越薄。塑性变形诱发的孪晶在中低层错能材料(如Cu、Cu合金及不锈钢等)十分普遍,提高应变速率或降低变形温度等均有助于孪晶形成。
卢柯表示,近期发展的动态塑性变形(DPD)技术可使材料中形成大量的纳米尺度孪晶界,已成为制备块状纳米孪晶结构的有效途径。利用纳米尺度共格晶界强化材料还可以带来优异的电学性能。研究表明,超高强度纳米孪晶Cu样品具有与无氧高纯铜相当的高电导率,可同时实现高强度高导电性。纳米孪晶结构可有效降低Cu中电致原子的扩散迁移率,从而大大降低电迁移效应,这为减少微电子器件中铜线的电迁移损伤找到了新的解决途径。也有学者发现纳米孪晶结构可有效提高材料的阻尼性能,为研发高性能阻尼材料开辟了新途径。
中科院金属所的科研人员表示,利用纳米尺度共格界面强化材料已成为一种提高材料综合性能的新途径。尽管在纳米尺度共格界面的制备技术、控制生长及各种理化性能、力学性能和使役行为探索等方面仍然存在诸多挑战,但这种新的强化途径在提高工程材料综合性能方面表现出巨大的发展潜力和广阔的应用前景
------------------(转自:新华网)
三、金属材料对人们生活的影响
1、在很大程度上,化学很受人喜爱,因为神奇多变的化学反应可以创造新的物质,让我们的生活更为方便舒适。执著于金属研究的卢柯说,作材料研究是如此地令人激动,有那么多的事情等着我们去发现,去研究!
2、卢柯以常人所不能及的“超音速”,20岁念完大学,25岁拿下博士学位,28岁成为研究员,30岁成为博士生导师,32岁任国家重点实验室主任,35岁担任中科院金属研究所所长,37岁当选中国科学院院士,取得了一系列国际公认的高水平科研成果,在《科学》和《物理评论快报》等顶级国际学术期刊发表了一系列论文。
3、大学时就读于机械制造工程系金属材料及热处理专业的卢柯与金属结下了不解之缘,他喜欢的课程是《金属学》与《金属材料的热处理》。1985年,卢柯从华东工学院(现为南京理工大学)毕业,来到中科院金属研究所攻读硕士学位。在“纳米浪潮”还没有掀起的时候,他较早地进入了后来很热门的纳米领域。
4、攻读博士学位期间,卢柯对非晶态金属的晶化动力学及其微观机制进行了深入研究,在国际上首次提出了非晶态材料的有序原子集团切变沉积化机制,并解释了一系列用经典理论难以解释的实验结果,为以后研究非晶体转变提供了理论依据;修正了被引用10多年的英国科学家斯考特等人确定的Ni-P非晶合金晶化产物间的位向关系;提出非晶态金属的新晶化机制。
5、在新晶化微观机制的基础上,卢柯于1990年提出制备纳米晶体的新方法——非晶晶化法,具有工艺简单、晶粒度易于控制、界面清洁且不含微孔洞等优点。论文在美国J.Appl.Phys及Scripta Metall.Mater.发表后,已被引用数百次。美国《应用物理杂志》审稿人对卢柯的这一成果极为赞赏,指出“非晶晶化法无疑对纳米材料研究具有重要价值”。材料科学家师昌绪认为,这一方法“为纳米材料的发展开辟了一条新途径,有广阔的应用前景”。国际学术刊物Mater.Sci.Eng.Reports邀请他撰写此领域的专题综述。该制备方法的确定,使我国在纳米晶体研究领域一跃进入国际前列,已成为目前国际上公认的纳米材料3种主要制备方法之一。
6、如何使金属具有超塑性——可承受很大的塑性变形而不断裂,成为各国材料学家面临的一道难题。20年前,葛莱特教授曾预测:如果将构成金属材料的晶粒尺寸减小到纳米量级,材料在室温下应具备很好的塑性变形能力。但多年来,尽管预测得到了计算机模拟结果的肯定,各国材料学家的实验结果却令人失望:孔隙大、密度小、被污染等因素使绝大多数纳米金属在冷轧中易出现裂纹,塑性很差。
7、2000年,卢柯课题组在实验室发现了纳米金属铜在室温下的“奇异”性能——即纳米金属铜具有超塑延展性而没有加工硬化效应,延伸率高达5100%。论文在《科学》上发表后,获得世界同行的普遍好评,纳米材料的“鼻祖”葛莱特教授认为,这项工作是“本领域的一次突破,它第一次向人们展示了无空隙纳米材料是如何变形的”。
8、专家指出,“奇异”性能的发现,缩短了纳米材料和实际应用的距离,意味着和普通金属力学性能完全不同的纳米金属,在精细加工、电子器件和微型机械的制造上具有重要价值。
9、卢柯及其课题组的另一项重要成果是关于晶体过热熔化微观机制方面的,发表在2001年第87卷的《物理评论快报》上。很快,材料科学家、剑桥大学教授RobertW.Cahn就在《自然》杂志上给予了专题评论。
10、2003年12月31日,卢柯在《科学》杂志上发表第二篇论文,将铁表层的晶粒细化到纳米尺度,其氮化温度显著降低,这为氮化处理更多种材料和器件提供了可能。表面氮化是工业中广泛应用的一种材料表面处理技术。在表面氮化过程中,材料或钢铁的表面氮化处理往往需要在较高温度下(高于500℃)进行,处理时间长达十几个小时,不仅能耗高,更重要的是,许多材料和工件在如此高温下长时间退火后会丧失其基体的高强度或出现变形,因此,表面氮化技术的应用受到很大限制。大幅度降低氮化温度是长期以来表面氮化技术应用中必须解决的重要技术瓶颈。
11、2004年1月12日,“我国金属材料表面纳米化技术和全同金属纳米团簇研究”被评为“2003年中国十大科技进展”之一。
12、2004年4月16日出版的第304卷《科学》杂志上,第三次出现了卢柯的名字。他们的研究表明,在纳米孪晶铜中获得超高强度的同时还保持了其良好的导电率;而以往的研究表明,对铜进行强化以后,其导电率是下降的。
13、在别人眼中,卢柯是战无不胜的“百胜将军”,是上天眷顾的人。只有他和课题组的同志才清楚自己曾经的失败,曾经的气馁。“你们所看到的成绩只是我1%的工作,其余的99%都是失败,都是残酷的现实。在我过去的研究中,经常会走到几乎坚持不下去的时候。”卢柯说。
14、“走不下去的时候,我总是勇敢地承认自己失败了。失败了,再换一个思路接着干。当然,这中间有一个心态调整的过程,但是必须调整到一个好的状态,重新开始。失败其实是科学工作的常态。跳高比赛是以失败而结束的,科学工作则是用一次次的失败来铺路,以成功作为新的起点。当你有了一个灵感,钻进了实验室里,半年,十个月,一年甚至两三年下来才有结果,可结果与你预想的完全不一样,当然沮丧极了。但我们的工作就是这样,你可以沮丧,可以暂时地消沉,但你不可以放弃你的目标。失败了,证明这个思路不对,从某种角度看,它就是你到达终极目标的一个过程。我经常对我的学生说,对自己的思维一定要有极强的信心,Nothing is impossible(没有什么事情是不可能的)!”
15、卢柯成功还有一个奥秘——自从上大学后,他就给自己制定了严格的时间表和工作计划,以非常人的工作节奏始终跑在别人的前头。十几年来,他一丝不苟地走在自己的行程中,不受任何外界的干扰。虽然他现在成了媒体追逐的科学明星,但依然故我。
16、“上天是公平的,它给每个人的时间是一样的,做了这个,就不能做那个。有的人活得很轻松,一天的活儿用两天的时间干,我则希望用半天的时间就能把一天的活儿干完。如果这样算来,**一天的活儿等于别人干两天的活儿。我在金属所干了18年,等于干了三四十年的活儿,那么,我37岁当院士,这样算起来也并不年轻。”卢柯说。
17、卢柯在努力工作、享受研究乐趣的同时,也感受到了材料学家的责任感,“现在是中国各个领域发展的好时期,也给材料学的研究创造了好的机会”。
18、卢柯说,中国工业化的进程对材料学科提出了许多严峻的、亟待解决的问题。上个世纪90年代,镍的需求量开始上扬,镍的价格不断上涨,2003年,镍的价格已经达到历史高水平,供需矛盾尖锐,原因就是中国的工业化。镍是用来做不锈钢的,工业化的显著标志是需要大量的不锈钢。其实,现在所有的原材料都在涨价。如果不发展先进的材料,将面临资源减少,价格上涨,中国的工业化成本将是非常巨大的。