一加五上面的N是什么 一加五这个是什么程序感觉好可爱啊
一、一加五这个是什么程序感觉好可爱啊***
这个是安卓7.0系统隐藏的自带彩蛋游戏。其它版本没有这个彩蛋游戏。
进入【设置】-【关于手机】,连续点击【Android版本号】7次即可进入,这个时候会出现一个大N的界面,【长按N】,N的下方会出现一个【红色的禁止图标】,如下图,如果没出现就多试几次,多次尝试依旧不出现,那就说明被精简掉了。
此时【松开N】再次【长按N】,【禁止图标】就会变成一只小猫,点击一下【小猫】(此处速度要快),然后【拉下通知栏】,点击右下角的【修改】按钮,滑到下面,你会发现下面出现了一个猫的头像(Android Easter Egg),出现小猫后,长按小猫图标,拖动到上面的快捷面板中即可:
接下来你只需要在快捷面板中点击刚才添加的图标,屏幕上会出现四种食物,分别是【猫粮、小鱼、鸡肉、甜甜圈】。你可以随意点击以一种食物放在盘子里,然后就可以等着把小猫吸引出来了。如果长时间没有出现猫咪,可以试试换其他的食物,有可能你选的食物不和猫咪的胃口哦。
以上*作详情可通过网页端点此参考
二、一加一等于2证明过程怎么写
皮亚诺公理,也称皮亚诺公设,是数学家皮亚诺(皮阿罗)提出的关于自然数的五条公理系统。根据这五条公理可以建立起一阶算术系统,也称皮亚诺算术系统。
皮亚诺的这五条公理用非形式化的方法叙述如下:
②每一个确定的自然数 a,都有一个确定的后继数x',x'也是自然数(一个数的后继数就是紧接在这个数后面的数,例如,1的后继数是2,2的后继数是3等等);
③如果b、c都是自然数a的后继数,那么b= c;
⑤设S是自然数集的一个子集,且(1)0属于S;(2)如果n属于S,那么n'也属于S。
(这条公理也叫归纳公理,保证了数学归纳法的正确性)
更正式的定义如下:一个戴德金-皮亚诺结构是这样的一个三元组(X, x, f),其中X是一个**,x为X中一个元素,f是X到自身的映射,且符合以下条件:
若x∈A且" a∈A蕴涵 f(a)∈A",则A=X。
该结构所引出的关于自然数**的基本假设:
2.N到N内存在a→a'的一一映射;
3.后继元素映射的像的**是N的真子集,事实上即N\{1}(或N\{0});
4.若N的子集P既含有非后继元素的元素,又有含有子集中每个元素的后继元素,则此子集与N相等。
∵1+1的后继数是1的后继数的后继数,即3,
根据皮亚诺公理③,可得:1+1=2。
加法是简单的数字任务之一。基本的加法:1+ 1,可以由五个月的婴儿,甚至其他动物物种进行计算。在小学教育中,学生被教导在十进制系统中进行数字的叠加计算,从一位的数字开始,逐步解决更难的数字计算。
**性代数中,向量空间是一个代数结构,允许添加任何两个向量和缩放向量。一个熟悉的向量空间是所有有序的实数对的**;有序对(a,b)被解释为从欧几里德平面中的原点到平面中的点(a,b)的向量。
三、一加一等于二是如何证明出的
1+1=2背后代表的是自然数公理化的历史。
自然数公理化,早于1881年,由美国数学家皮尔斯提出,定义如下:
x+y,当x=1时,是下一大于y的数,其它情况,是下一个大于x⁻+y的数;
x×y,当x=1时,就是y,其它情况,为y+x⁻y;
其中,x⁻是上一个小于x的数。
因为,减法和除法分别是加法和乘法的逆运算(而且对自然数并不封闭),因此只需要公理化加法和乘法就可以了。
按照皮尔斯公理的定义,1+1是x=1的情况,它的值是下一个大于y=1的数,即,2。
之后,1888年德国数学家戴德金,给出了另外一套公理:
设非空N,给定N中的一个元素e∈N,已经N上的映射S:N→N,若满足:
e不是S的值,即:e∉ranS;
S是单射,即:∀n,m∈N,(S(n)=S(m))⇒(n=m);
归纳原理,即,对于任意子集A⊂N,如果e∈N并且若n∈A则S(n)∈A那么A就是N,即:∀A⊂N,(1∈N)∧((1∈N)⇒(S(n)∈A))⇒(A=N),
则称三元组(N,e,S)是一个自然数系统,N称为自然数集,e称为初始元,S称为后继。
戴德金,从更本质的层次,对自然数进行了公理化,可以通过这套公理,定义自然数的加法和乘法运算从而和皮尔斯公理等价。
但是,这个公理系统表示的有些复杂(当时数理逻辑语言才刚刚建立),于是,没有引人们注意。
注:这里⊂是包含于,真包含于记为⊊。
紧接着第二年,即,1889年,意大利数学家皮亚诺,独立于戴德金,发布了皮亚诺公理:
任意一个自然数n的后继数n⁺任然是自然数;
两个自然数相等当且仅当它们的后继数相等;
对于自然数集的子集A,如果0∈N并且若n∈A则n⁺∈A那么A就是自然数集。
很明显,皮亚诺公理就是戴德金公理的简化版本,因此也称为戴德金-皮亚诺公理。
注:早,皮亚诺用1作为小的自然数,并且将等价关系作为公理的一部分,上面是后来的改进版本。
用皮亚诺公理,定义自然数加法如下:
利用上面的加法定义,证明题主的问题:
1+1=1+0⁺=(1+0)⁺=1⁺=2
以上不管是那个公理系统都是抽象的,在不同的数学领域有不同的实例,以皮亚诺公理为例有:
1=λ.sλ.zsz,2=λ.sλ.zs(sz),3=λ.sλ.zs(s(sz))
设C是一个范畴,1是C的终止对象,于是定义范畴US₁(C)如下,
US₁(C)的对象是一个三元组(X,0ᵪ,Sᵪ),其中X是C的对象,0ᵪ:1→X和Sᵪ:X→X都是C的态射;
US₁(C)的态射f:(X,0ᵪ,Sᵪ)→(Y,0ᵧ,Sᵧ)就是C态射f:X→Y,并满足:f0ᵪ=0ᵧ并且fSᵪ=Sᵧf,
如果US₁(C)中可以找到一个初始对象(N,0,S),即,对于任意对象(X,0ᵪ,Sᵪ),有唯一的态射u:(N,0,S)→(X,0ᵪ,Sᵪ),则称C满足皮亚诺公理。US₁(C)中每个三元组对象都是一个皮亚诺公理系统。
可以证明这些实例都满足皮亚诺公理定义的条件,因此这些实例都是良定义的。
(由于本人数学水平有限,出错在所难免,欢迎题主和各位老师批评指正!)
1、很多人不明白1+1=2为什么要被证明,这不是常识吗?
然而这个问题背后大有来头,看似简单却又奇妙无比。我来回答一下为什么1+1=2需要被证明,以及为什么这么难以被证明。
所谓“1+1=2”,其实指的是哥德巴赫猜想,被称为世界近代三大数学难题之一。
1742年,哥德巴赫突发奇想:“任一大于2的整数都可写成三个质数之和。”然而哥德巴赫自己却无法证明,于是就给大名鼎鼎的欧拉写了一封信,提出了他的猜想,希望欧拉帮助他解决这个问题。
然而伟大的欧拉面对这个奇妙猜想,一直到去世,也没有办法给出合理的证明。有意思的是,至今几百年过去了,这道连小学生都能理解的题,却难倒了天下所有数学家。
目前接近完美证明1+1=2的人我国的著名数学家陈景润先生,1966年,陈景润证明了哥德巴赫猜想中的“1+2”理论。这个结论被称为“陈氏定理”,将哥德巴赫猜想的证明大大地推进了一步。
注:在这之前,其他数学家曾从“1+n”逐渐证明到了“1+5”、“1+4”、“1+3”,这也叫筛选法。
而陈景润的“1+2”与“1+1”仅差一步之遥。只要证明了“1+1”理论,哥德巴赫猜想便可以划上一个完美的句号了。
然而,实际上我们距离这个问题的完美证明还有很远的距离。
很多人不理解为什么哥德巴赫猜想这么伟大,其实原因就在于这个猜想几乎可以为所有大于2的整数定义。就相当于告诉世人,看,所有的整数都是由质数构成的。
而这,就好像在没有显微镜的时候,突然有人提出原子是构成所有物质的小要素一样。
证明哥德巴赫猜想的难度,和要在没有显微镜的情况下证明原子是构成万物的难度一样。
在这个问题下面看到很多不友善的回答,希望题主不用理会,追求真理是一件伟大的事。不过好心提醒一句题主,不要试图自己证明1+1=2,就算你宣称自己证明成功了,多半还是难免被冠以民科的称呼。
(2)每一个自然数a,都有一个确定的后继数a',且a’也是自然数;
(3)0不是任何自然数的后继数;
(4)不同自然数有不同的后继数,如果a、b的后继数都是自然数c,那么a=b;
(5)如果**S是自然数**N的子集,且满足两个条件:Ι、0属于S;ΙΙ、如果n属于S,那么n的后继数也属于S;那么S就是自然数集,这条公理也叫做归纳公理。
这个公理的第五条描述的比较恶心。鉴于你这个问题我们就讨论第二条就可以
第二条公理中,假设自然数1的后继数为x',也就是说1+1=x'。然后我们就定义了x'叫做2,也就是说“1+1=2”;当然,你硬要定义为0也行,但是你就需要另外找一个名称,来代替原来的0,不然就和公理(3)矛盾了。
所以1+1=2这是人为定义,无需证明,也无法推翻。如果1+1不等于2,毫不客气的说,当前数学界百分之99以上的定理将全部崩塌,数学就要重新开始。
总结:不过,1+1还有一个含义,是哥德巴赫猜想的究极体形态。这个猜想目前还没有人可以证明,目前好的证明是陈景润的1+2,所以哥德巴赫猜想1+1目前还无解,我当然也提供不了任何解决的思路。
如您还有其他对特的见解,欢迎留言一起讨论!