空气压缩机的安全能指标?空压机技术指标
一、空气压缩机的额定排气量 是什么意思
空气压缩机的额定排的意思是指空气压缩机中安全阀的实际排放量中允许作为安全阀实际安全使用的那一部分排放量。
是安全阀的重要性能指标,又称“安全阀额定泄放量”。设计、选择安全阀时,必须是安全阀的额定排量大于设备或系统要求的安全排量。
在空气压缩机中,排气量的大小跟压力成正比例关系,即空气压缩机中的压力也越大,其排气量越大。排气量作为压缩机的一个重要性能参数,排气量能够将单位时间内机组生产压缩气体量反映出来。
扩展资料:
空气压缩机排气量的相关介绍:
通常排气量的测定有两种方式,即直接测定与间接测定。直接测量法也有几种,例如贮气罐测量法,这是一种对某一时间段流进贮气罐压缩空气量进行直接
测定的方法,并根据测定结果对空气压缩机的排气量进行推算。
间接测量中节流装置的使用比较广泛,在同一时间内空气压缩机排出的气体保持着稳定不变的状态下,对流过节流孔前后的有关动态参数进行测定并计算,得出空气压缩机排气量。常用的测量方法包括喷嘴法、充罐法、压差式流量计和孔板法等。
通过对测试系统测量的排气量与原实验测试方法测量的排气量以及理论排气量的多组数据进行了比较分析,结果表明,压缩机排气量测试系统测量的排气量与原实验方法测量的排气量数值接近,且测试系统测量的排气量更接近理论排气量的数值。
参考资料来源:百度百科-安全阀额定排量
参考资料来源:百度百科-排气量
参考资料来源:百度百科-空气压缩机
二、空气压缩机分为什么两种性能指标为什么
空气压缩机可以按照排气压力和压缩方式分类,因此可以分为以下两种性能指标:
1.排气压力性能指标:按照压缩出气的高压力来区分,通常分为低压空气压缩机和高压空气压缩机两种。低压空气压缩机可以将空气压缩到1 MPa以下的低压,具有较高的压缩效率和广泛的应用领域;而高压空气压缩机可以将空气压缩到1 MPa以上的高压,通常用于需要高压气体的工业和生产领域。
2.压缩方式性能指标:按照压缩方式的不同来区分,主要分为螺杆型空气压缩机和活塞型空气压缩机两种。螺杆型空气压缩机采用螺杆离心运动的方式进行压缩,具有低噪音、高效率、稳定性好等特点,适用于需要长时间连续运转的场合;而活塞型空气压缩机通过上下运动的活塞进行压缩,虽然体积较大,但是价格较低,适用于中小型的气体压缩任务。
综上,根据不同的应用需求,可以选择不同性能指标的空气压缩机进行使用。
三、气体输送和压缩设备
输送和压缩气体的设备统称为气体压送机械,其作用与液体输送设备颇为类似,都是把能量传递给流体,使流体流动。
气体压送机械可按其出口气体的压强或压缩比来分类。压送机械出口气体的压强也称为终压。压缩比是指压送机械出口与进口气体的绝对压强的比值。根据终压大致将压送机械分为:
通风机终压不大于15kPa(1500mm H20);
鼓风机终压为0.015~0.3MPa(0.15~3kgf/cm2),压缩比小于4;
压缩机终压在0.3MPa(3kgf/cm2)以上,压缩比大于4;
真空泵将低于大气压的气体从容器或设备内抽至大气中。
此外,压送机械按其结构与工作原理又可分为离心式、往复式、旋转式和流体作用式。
一、离心通风机、鼓风机与离心压缩机
离心通风机、鼓风机及离心压缩机的工作原理与离心泵相似,依靠叶轮的旋转运动,使气体获得能量,从而提高了压强。通风机通常为单级的,所产生的表压强低于15kPa(1500mm H2O),对气体起输送作用。鼓风机有单级亦有多级,产生的表压强低于3kgf/cm2,透平机都是多级的,产生的表压强高于3kgf/cm2,对气体都有较显著的压缩作用。
(一)离心通风机
离心通风机按所产生的风压不同,可分为:
低压离心通风机出口风压低于1kPa(100mm H2O);
中压离心通风机出口风压为1~3kPa(100~300mm H2O);
高压离心通风机出口风压为3~15kPa(300~1500mm H2O)。
1.离心通风机的结构
图2-21所示为低压离心通风机。离心通风机的结构和单级离心泵相似。它的机壳断面有方形和圆形两种。离心通风机的叶片数较离心泵多,而且不限于后弯叶片,也有前弯叶片。在中、低压离心通风机中,多采用前弯叶片,主要原因是由于要求压力不高。前弯叶片有利于提高风速,从而减少通风机的截面积,因而设备尺寸可较后弯时为小。但是,使用前弯叶片时,风机的效率低,能量损失较大。
图2-21离心通风机
1-机壳;2-叶轮;3-吸入口;4-排出口
2.离心通风机的性能参数与特性曲线
离心通风机的主要性能参数有风量、风压、轴功率和效率。由于气体通过风机的压强变化较小,在风机内运动的气体可视为不可压缩,所以离心泵基本方程式亦可用来分析离心通风机的性能。
(1)风量风量是单位时间内从风机出口排出的气体体积,并以风机进口处气体的状态计,以Q表示,单位为m3/h。
(2)风压风压是单位体积的气体流过风机时所获得的能量,以ht表示,单位为J/m3=N/m2。由于ht的单位与压强的单位相同,故称为风压。既然是压强的单位,通常又用mmH2O来表示。
离心通风机的风压取决于风机的结构、叶轮尺寸、转速与进入风机的气体密度。
目前还不能用理论方法去精确计算离心通风机的风压,而是由实验测定。一般通过测量风机进、出口处气体的流速与压强的数据,按柏努利方程式来计算风压。
离心通风机对气体所提供的有效能量,常以1m3气体作为基准。设风机进口为截面1-1′,出口为截面2-2′,根据以单位体积流体为基准的柏努利方程式可得离心通风机的风压为:
非金属矿产加工机械设备
式中ρ及(z2-z1)值都比较小,(z2-z1)ρg可忽略;风机进、出口间管段很短,ρ∑hf1-2也可忽略;又当风机进口处与大气直接相连时,且截面1-1′位于风机进口外侧,则v1也可忽略,因此上式可简化为:
非金属矿产加工机械设备
上式中(p2-p1)称为静风压,以hpt表示。
称为动风压。离心通风和出口处气体的流速较大,故动风压不能忽略,根据上述的实验装置情况,离心通风机的风压为静风压与动风压之和,又称为全风压。通风机性能参数表上所列的风压是指全风压。
(3)轴功率与效率离心通风机的轴功率为:
非金属矿产加工机械设备
式中N——轴功率(kW);
Q——风量(m3/s);
ht——风压(Nm/m3);
η——效率,因按全风压定出,故又称为全压效率。
风机的轴功率与被输送气体密度有关,风机性能参数表上所列出的轴功率均为实验条件下,即空气的密度为1.2kg/m3时的数值,若所输送的气体密度与此不同,可按下式进行换算,即:
非金属矿产加工机械设备
式中N′——气体密度为ρ′时的轴功率(kW);
N——气体密度为1.2kg/m3时的轴功率(kW)。
离心通风机的特性曲线,如图2-22所示。表示某种型号通风机在一定转速下,风量Q与风压ht、静风压hpt、轴功率、效率η四者的关系。
图2-22离心通风机特性曲线示意图
3.离心通风机的选择
离心通风机的选择和离心泵的情况相类似,其选择步骤为:
(1)根据柏努利方程式,计算输送系统所需的风压ht。
(2)根据所输送气体的性质(如清洁空气、易燃、易*或腐蚀气体以及含尘气体等)与风压范围,确定风机类型。若输送的是清洁空气,或与空气性质相近的气体,可选用一般类型的离心通风机,常用的有4-72型、8-18型和9-27型。前一类型属于低压通风机,后两类属于高压通风机。
(3)根据实际风量Q(以风机进口状态计)与实验条件下的风压ht,从风机样本或产品目录中的特性曲线或性能表选择合适的机号,选择原则与离心泵相同,不再详述。
每一类型的离心通风机又有各种不同直径的叶轮,因此离心通风机的型号是在类型之后又加机号,如4-72No.12。4-72表示类型,No.12表示机号,其中12表示叶轮直径为12cm。
(4)若所输送气体的密度大于1.2kg/m时,需按式(2-19)计算轴功率。
表2-4为国产部分风机的性能和用途。
(二)离心鼓风机和离心压缩机
离心鼓风机又称透平鼓风机,工作原理与离心通风机相同,可单级也可多级,多级的结构类似于多级离心泵。图2-23所示为一台五级离心鼓风机的示意图。气体由吸气口进入后,经过第一级的叶轮和导轮,然后转入第二级叶轮入口,再依次通过以后所有的叶轮和导轮,后由排出口排出。
离心鼓风机的送气量大,但所产生的风压仍不高,出口表压强一般不超过0.3MPa(3kgf/cm3)。由于在离心鼓风机中,气体的压缩比不高,所以无需冷却装置,各级叶轮的直径也大体上相等。
离心压缩机常称透平压缩机,主要结构、工作原理都与离心鼓风机相似,只是离心压缩机的叶轮级数多,可在10级以上,转速较高,故能产生更高的压强。由于气体的压缩比较高,体积变化就比较大,温度升高也较显著。因此,离心压缩机常分成几段,叶轮直径与宽度逐段缩小,段与段之间设置中间冷却器,以免气体温度过高。
离心压缩机流量大,供气均匀,体积小,机体内易损部件少,可连续运转且安全可靠,维修方便,机体内无润滑油污染气体。所以,近年来除要求压强很高的情况以外,离心压缩机的应用日趋广泛。
表2-4常用风机性能范围和用途表
二、旋转鼓风机
目前应用广的旋转鼓风机是罗茨鼓风机。
罗茨鼓风机的工作原理与齿轮泵相似。如图2-24所示。机壳内有两个特殊形状的转子,常为腰形,两转子之间、转子与机壳之间缝隙很小,使转子能自由转动而无过多的泄漏。两转子旋转方向相反,可使气体从机壳一侧吸入,而从另一侧排出。如改变转子的旋转方向时,则吸入口与排出口互换。
图2-23五级离心鼓风机示意图
罗茨鼓风机的风量和转速成正比,而且几乎不受出口强度变化的影响。罗茨鼓风机转速一定时,风量可保持大体不变,故称定容式鼓风机。这一类型鼓风机的输气量范围是2~500m3/min,出口表压强在80kPa(0.8kgf/cm2)以内,但在表压强为40kPa(0.4kgf/cm2)附近效率较高。
罗茨鼓风机的出口应安装气体稳压罐,并配置安全阀。一般采用回路支路调节流量。出口阀不能完全关闭。*作温度不能超过85℃,否则会引起转子受热膨胀,发生碰撞。
图2-24罗茨鼓风机
三、往复压缩机
往复压缩机的构造、工作原理与往复泵比较相近。主要部件有气缸、活塞、吸气阀和排气阀。依靠活塞的往复运动而将气体吸入和压出。
图2-25所示为立式单作用双缸压缩机,在机体内装有两个并联的气缸1,称为双缸,两个活塞2连于同一根曲轴5上。吸气阀4和排气阀3都在气缸的上部。气缸与活塞端面之间所组成的封闭容积是压缩机的工作容积。曲柄连杆机构推动活塞不断在气缸中作往复运动,使气缸通过吸气阀和排气阀的控制,循环地进行吸气-压缩-排气-膨胀过程,以达到提高气体压强的目的。气缸壁上装有散热翅片,使热量易于扩散。
图2-25立式单作用双缸压缩机
1-气缸体;2-活塞;3-排气阀;4-吸气阀;5-曲轴;6-连杆
(一)往复压缩机的工作过程
往复压缩机的构造和工作原理与往复泵虽相接近,但因往复压缩机所处理的是可压缩的气体,在压缩后气体的压强增大,体积缩小,温度升高,因此往复压缩机的工作过程与往复泵就有所不同,图2-26为单作用往复式压缩机的工作过程。当活塞运动至气缸的左端(图中A点),压出行程结束。但因为机械结构上的原因,虽则活塞已达到行程的左端,气缸左侧还有一些容积,称余隙容积。由于余隙的存在,吸入行程开始阶段为余隙内压强为p2的高压气体膨胀过程,直至气压降至吸入气压p1(图中B点)吸入活门才开启,压强为p1的气体被吸入缸内。在整个吸气过程中,压强基本保持不变,直至活塞移至右端(图中C点),吸入行程结束。当活塞改向左移,压缩行程开始,吸入活门关闭,缸内气体被压缩,当缸内气体的压强增大至稍高于p2(图中D点),排出活门开启,气体从缸体排出,直至活塞至左端,排出过程结束。
由此可见,压缩机的一个工作循环是由膨胀-吸入-压缩-排出等四个阶段组成。在图2-26的p-V坐标上为一封闭曲线,BC为吸入阶段,CD为压缩阶段,DA为排出阶段,而AB则为余隙气体的膨胀阶段。由于气缸余隙内有高压气体存在,因而使吸入气体量减少,增加动力消耗。故余隙不宜过大,一般余隙容积为活塞一次所扫过容积的3%~8%,此百分比又称余隙系数,以符号ε表示。
图2-26往复压缩机的工作过程
非金属矿产加工机械设备
式中Va——余隙容积;
Vc-Va——活塞扫过的容积。
当气体经压缩后体积缩小,压强增大,温度显著上升。为了提高压缩机的工作效率,在*作上常使用段间冷却方法,以减少气体温度的上升,同时在气缸构造上设置空冷或水冷装置。
(二)往复压缩机的选用
往复压缩机的选用主要依据生产能力和排气压力(或压缩比)两个指标。生产能力通常用以进口状态下流量m3/min表示。排气压力(或称终压)是以Mpa表示。在实际选用时,首先应考虑所输送气体的特殊性质,选定压缩机的种类和压缩段数。然后根据压缩机按气缸的空间位置划分各类型的优缺点,选定压缩机的类型。压缩机的机种和型号选定以后,即可根据生产的需要,按照前述的生产能力和排气压力两个指标,由产品样本中,选定所需用的压缩机。
四、真空泵
从真空容器中抽气并加压排向大气的压缩机称为真空泵。真空泵的型式很多,现将常用的几种,简单介绍如下:
(一)往复真空泵
往复真空泵的基本结构和*作原理与往复压缩机相同,只是真空泵在低压下*作,气缸内外压差很小,所用阀门必须更加轻巧,启闭方便。另外,当所需达到的真空度较高时,如95%的真空度,则压缩比约为20。这样高的压缩比,余隙中残余气体对真空泵的抽气速率影响必然很大。为了减少余隙影响,在真空泵气缸两端之间设置一条平衡气道,在活塞排气终了时,使平衡气道短时间连通,余隙中残余气体从一侧流向另一侧,以降低残余气体的压力,减少余隙的影响。
(二)水环真空泵
如图2-27所示。外壳1内偏心地装有叶轮,其上有辐射状的叶片2。泵内约充有一半容积的水,当旋转时,形成水环3。水环具有液封的作用,与叶片之间形成许多大小不同的密封小室,当小室渐增时,气体从入口4吸入;当小室容积渐减时,气体由出口6排出。
水环真空泵可以造成的高真空度为85kPa(0.85kgf/cm2)左右,也可以作鼓风机用,但所产生的表压强不超过0.1MPa(1kgf/cm2)。当被抽吸的气体不宜与水接触时,泵内可充以其他液体,所以又称液环真空泵。
图2-27水环式真空泵工作示意图
1-泵体;2-叶轮;3-水环;4-进气孔;5-工作室;6-排气孔;7-排气管;8-进气管;9-放空管;10-水箱;11-放水管道;12-控制阀
此类泵结构简单、紧凑,易于制造与维修,由于旋转部分没有机械摩擦,使用寿命长,*作可靠。适用于抽吸含有液体的气体,尤其在抽吸有腐蚀性或*炸性气体时更为合适。但效率很低,约为30%~50%,所能造成的真空度受液体温度所限制。
四、空压机技术指标***有哪些
一般用途空压机按国家标准规定,排气压力为0.7MPa。如果高于或低于此压力,即属非标准特种空压机。
空压机主要有以下几种:按输气量(是指空压机工作时每分种排出的气体换算成吸入状态的体积)分有小型机(排气量在10立方米/分以下)、中型机(排气量在10~100立方米/分)、大型机(排气量在100立方米/分以上)。
按结构型式分有回转式、活塞式、膜式空压机。常见的有活塞式和回转式中的螺杆式、滑片式。螺杆压缩机转子型线复杂,制造成本较高,但其体积小,质量轻,零件小。相同排气量的情况下,螺杆式压缩机要比活塞式压缩机贵很多,维修人员也必须有专门的知识和经验。
按气缸中心线和相对位置可分为立式、卧式、角度式空压机。其中,角度式又分为V型、W型、L型等。一般来讲,由于活塞式压缩机为往复式机器,都有一定的震动。而角度式能较好地平衡其惯性力,所以,中小型活塞式压缩机大多做成角度式,只有车船用压缩机由于受占地面积的限制而做成立式。卧式压缩机是初期产品,由于没有优越性,现在几乎不再生产。
按冷却器方式可分为水冷式和风冷式空压机。水冷式采用自来水开式循环冷却;风冷式为风扇冷却。
按发动机的不同可分为电动机驱动方式和柴油机驱动方式空压机。大型电动式配有配电柜,柴油驱动式由电瓶启动,两种压缩机均有直联、侧联(即皮带传动)。
按润滑方式可分为无油式和机油润滑式空压机,后一种又分为飞溅式和强制式(即油泵和注油器供油润滑式)。
按宽代压机基础配置可分为固定式(有基础式、无基础式)和移动式空压机。
选择空压机的基本准则是经济性、可靠性与安全性。
一是应考虑排气压力的高低和排气量大小。一般用途空气动力用压缩机排气压力为0.7MPa,老标准为0.8MPa。目前社会上有一种排气压力为0.5MPa的空压机,从使用角度看是不合理的,因为对风动工具而言其压力余量太小,输气距离稍远一些就不能使用。另外,从设计角度看,这种压缩机设计为一级压缩,压比太大,易引起排气温度过高,造成气缸积炭,导致事故发生。如果用户所用的压缩机大于0.8MPa,一般要特别制造,不能采取强行增压的办法,以免造成事故。
排气量是空压机的主要参数之一,选择空压机的气量要和所需的排气量相匹配,并留有10%的余量。如果用气量大而空压机排气量小,风动工具一开动,会造成空压机排气压力的大大降低,而不能驱动风动工具。当然盲目追求大排气量也是错误的,因为排气量越大压缩机配的电机越大,不但价格高,而且浪费购置资金,使用时也会浪费电力能源。
另外,在选排气量时还要考虑高峰用量和通常用量及低谷用量。如果低谷用量较大,而通常用量和高峰用量都不大,国外通常的办法是以较小排气量的空压机并联取得较大的排气量,随着用气量增大而逐一开机,这样不但对电网有好处,而且能节约能源。
二是要考虑用气场合和条件。如用气场地狭小(船用、车用),应选立式;如用气场合有长距离的变化(超过 500米),则应考虑移动式;如果使用场合不能供电,则应选择柴油机驱动式;如果使用场合没有自来水,就必须选择风冷式。
在风冷、水冷两种冷却方式上,用户常有错误的认识,认为水冷好,其实不然。国内外小型压缩机中风冷式大约占到90%以上,这是因为在设计上风冷简便,使用时无需水源。
而水冷式压缩机的致命缺点有四:必须有完备的上下水系统,投资大;水冷式冷却器寿命短;在北方冬季还容易冻坏气缸;在正常的运转中会浪费大量的水。
三是要考虑压缩空气质量。一般空压机产生的压缩空气均含有一定量润滑油,并有一定量的水,有些场合是禁油和禁水的,这时不但对压缩机选型要注意,必要时要增加附属装置。
解决的办法:一是选用无润滑压缩机。这种压缩机气缸中基本上不含油,其活塞环和填料一般为聚四氟乙烯。但这种机器也有缺点,润滑不良,故障率高;聚四氟乙烯也是一种有害物质,食品、制*行业不能使用;无润滑压缩机只能做到输气不含油,不能做到不含水。第二种也是常用的方法,是将空压机(无论哪种)再加一级或二级净化装置或干燥器。这种装置可使压缩机空气既不含油又不含水,使压缩空气中的含油水量在5ppm以下,可满足工艺要求。
四是要考虑压缩机运行的安全性。空压机是一种带压工作的机器,工作时伴有温升和压力,其运行的安全性要放在首位。国家对压缩机的生产实行规范化的“两证”制度,即压缩机生产许可证和压力容器生产许可证(储气罐)。因此,在选购压缩机产品时,要严格审查“两证”。通常有证厂家的产品质量保证系统是完善的,不会出现大的质量问题,即使出现一些问题,也会由厂家负责三包。