焊接能好且强度高的钢种,超高强度钢
一、超高强度钢
应用于制造承受较高应力结构件的合金钢类,一般屈服强度大于120kgf/mm2、抗拉强度大于140kgf/mm2。
20世纪40年代中期,美国研制成Cr-Mo钢(AISI4130)和Cr-Ni-Mo钢(AISI 4340),经淬火和低温回火后,抗拉强度分别为170和190kgf/mm2。50年代初,在AISI 4340钢的基础上加入Si和V,制成300M,抗拉强度达190~210kgf/mm2。1960年,国际镍公司制成马氏体时效钢,抗拉强度约为180kgf/mm2,断裂韧度高达390kgf/mm帮。70年代,美国在300M基础上降C增Si,改善韧性,发展成HP310钢;在马氏体时效钢的基础上研究成AF1410钢,抗拉强度为170kgf/mm2,断裂韧度达400kgf/mm帮(见断裂韧性试验)。
中国从50年**始研究和生产超高强度钢,已有多种钢号的产品,主要有SiMnMoV、SiMnCrMoV和加有稀土元素的SiMnCrMoV系列钢,抗拉强度为170~190kgf/mm2,断裂韧度可达250~280kgf/mm帮。
超高强度钢必须具有高的抗拉强度,和保持足够的韧性,还要求比强度(强度与密度之比)大和屈强比(σs/σb)高,以减轻构件的重量,而且要有良好的焊接性和成形性等工艺性能。
类别按照合金化程度及显微组织,超高强度钢可分为低合金、中合金和高合金超高强度钢三类。在高合金超高强度钢中又有马氏体时效钢和沉淀硬化不锈钢等(见金属的强化)。
低合金超高强度钢是由调质结构钢发展起来的,含碳量一般在0.3~0.5%,合金元素总含量小于5%,其作用是保证钢的淬透性,提高马氏体的抗回火稳定性和抑制奥氏体晶粒长大,细化钢的显微组织。常用元素有镍、铬、硅、锰、钼、钒等。通常在淬火和低温回火状态下使用,显微组织为回火板条马氏体,具有较高的强度和韧性。如采用等温淬火工艺,可获得下贝氏体组织或下贝氏体与马氏体的混合组织,也可改善韧性。这类钢合金元素含量低,成本低,生产工艺简单,广泛用于制造飞机大梁、起落架构件、发动机轴、高强度螺栓、固体火箭发动机壳体和化工高压容器等。
中合金超高强度钢热作模具钢的改型钢,典型钢种有4Cr5MoSiV钢。这类钢的含碳量约0.4%,合金元素总含量约8%,具有较高的淬透性,一般零件经高温奥氏体化后,空冷即可获得马氏体组织,500~550℃回火时,由于碳化物沉淀产生二次硬化效应,而达到较高的强度。这类钢的特点是回火稳定性高,在500℃左右条件下使用,仍有较高的强度,一般用于制造飞机发动机零件。
马氏体时效钢典型钢种有18Ni马氏体时效钢,含碳小于0.03%,镍约18%,钴8%。根据钼和钛含量不同,钢的屈服强度分别可达到140、175和210kgf/mm2。从820~840℃固溶处理冷却到室温时,转变成微碳Fe-Ni马氏体组织,其韧性较Fe-C马氏体为高,通过450~480℃时效,析出部分共格金属间化合物相(Ni3Ti、Ni3Mo),达到较高的强度。镍可使钢在高温下得到单相奥氏体,并在冷却到室温时转变为单相马氏体,而具有较高的塑性。同时镍也是时效强化元素。钴能使钢的马氏体开始转变温度升高,避免形成大量残留奥氏体。这类钢的特点是强度高,韧性高,屈强比高,焊接性和成形性良好;加工硬化系数小,热处理工艺简单,尺寸稳定性好,常用于制造航空器、航天器构件和冷挤、冷冲模具等。
9 Ni-4Co型超高强度钢含9%镍使钢固溶强化和提高韧性,加 4%钴的作用在于尽量减少钢中残留奥氏体量,钼和铬是为了产生沉淀硬化效应。含碳 0.20~0.30%时,抗拉强度可达130~160kgf/mm2,断裂韧度达400kgf/mm帮以上。综合性能好,抗应力腐蚀性高,具有良好的工艺性能,常用于航空、航天工业。
沉淀硬化不锈钢简称PH不锈钢,是在不锈钢的基础上发展起来的具有抗腐蚀性能的超高强度钢。合金元素总含量约为22~25%。按高温固溶处理后冷至室温时显微组织的不同,可分为奥氏体型、半奥氏体型和马氏体型三类。典型钢种有0Cr17Ni7Al和0Cr15Ni7Mo2Al,抗拉强度约为160kgf/mm2。这类钢有良好的耐蚀性、抗氧化性。钢的强化是通过固溶处理、冷处理或形变后再时效,析出弥散沉淀相而实现的。这类钢主要用于制造高应力耐腐蚀的化工设备零件、航空器结构件和高压容器等(见不锈耐酸钢)。
生产工艺超高强度钢对冶金质量要求高,通常采用电弧炉和电渣重熔冶炼。要求纯度高的钢种,多采用真空感应炉或真空自耗电弧炉冶炼。中、低合金超高强度钢在热处理时应防止脱碳;马氏体时效钢和沉淀硬化不锈钢,可以用普通加热炉固溶处理。焊接时须采用保护气体焊接或采用钨极氩弧焊接。某些含碳较高的(0.4%左右)低合金超高强度钢,焊接后应立即进行去应力退火。
二、所有高强度钢和先进高强度钢性能
1、“超高强度钢”的定义是相对于时代要求的技术进步程度而在变化的。一般讲,屈服强度在1 370MPa(140 kgf/mm2)以上,抗拉强度在1 620 MPa(165 kgf/mm2)以上的合金钢称超高强度钢。
按其合金化程度和显微组织分为低合金中碳马氏体强化超高强度钢、中合金中碳二次沉淀硬化型超高强度钢、高合金中碳Ni—Co型超高强度钢、超低碳马氏体时效硬化型超高强度钢、半奥氏体沉淀硬化型不锈钢等。
低合金中碳马氏体强化型超高强度钢(MART)是在低合金调质钢的基础上发展起来的,合金元素总量一般不超过6%。主要牌号包括传统的镍铬钼调质钢4340(40CrNiMo),碳含量0.45%的镍铬钼钒钢D6AC(45 CrNiMoV),碳含量0.30%的铬锰硅镍钢(30CrMnSiNi2A),在4340钢基础上通过加入硅(1.6%)和钒(0.1%)而研制成的300M钢(43CrNiSiMoV)以及不含镍的硅锰钼钒或硅锰铬钼钒等。通过真空熔炼降低钢中杂质元素含量,改善钢的横向塑性和韧性,由于钢中合金元素含量较低,成本低,生产工艺简单,广泛用于飞机大梁、起落架、发动机轴、高强度螺栓、固体火箭发动机壳体和化工高压容器等。
中合金中碳二次沉淀硬化型超高强度钢是从5%Cr型模具钢移而来的。由于它在高温回火状态下有很高的强度和较满意的塑性和韧性,抗热性好,组织稳定,用于飞机起落架、火箭壳体等。典型钢种为H11和H13等。其主要成分为:C 0.32%--0.45%;Cr 4.75%--5.5%;Mo 1.1%--1.75%;Si 0.8%--1.2%。
高合金中碳Ni—Co(9Ni--4Co--××)型超高强度钢,是在具有高韧性、低脆性转变温度的9%Ni型低温钢的基础上发展起来的。在9%Ni钢中添加钻是为了提高钢的Ms(马氏体转变)温度,减少钢中的.残余奥氏体,同时,钻在镍钢中起固溶强化作用,还通过加钻来获得钢的自回火特性,从而使这类钢具有优良的焊接性能。碳在这类钢中起强化作用。钢中还含有少量铬和钼,以便在回火时产生弥散强化效应。主要牌号有HP9-4-25,HP9-4-30,HP9-4-45以及改型的AF1410(0.16%C-10%Ni-14%Co-1%Mo-2%Cr-0.05%V)等。这类钢综合力学性能高。抗应力腐蚀性好,具有良好的工艺性能和焊接性能,广泛用于航空、航天和潜艇壳体等产品上。
超低碳马氏体时效硬化型超高强度钢,通常称马氏体时效钢。钢的基体为超低碳的铁镍或铁镍钴马氏体。其特点是,马氏体形成时不需要快冷,可变温及等温形成;具有体心立方结构;硬度约为HRC20,塑性很好;再加热时不出现像在低碳马氏体中发生的回火现象,并有很大的逆转变温度迟滞,因而可以在较高温度进行马氏体基体内的时效硬化。在这样的高镍马氏体中含有能引起时效强化的合金元素,借助于时效强化,从过饱和的马氏体中析出弥散分布的金属间化合物,使钢获得高强度和高韧性。按镍含量,马氏体时效钢分为25%Ni、20%Ni、18%Ni和12%Ni等类型。18%Ni型应用较广,为含有钼、钛等强化原素的超低碳铁-镍(18%)-钻(8.5%)合金,包括3个牌号:18%Ni(200)、18%Ni(250)、和18%Ni(300)(200、250、300为抗拉强度等级,单位为Ksi)。这种钢是通过金属间化合物的析出使钢强化。借无碳的马氏体基体取得高塑性,后达到很高的强度塑性配合。这类钢具有良好的成形性能、焊接性能和尺寸稳定性,热处理工艺也较简单,用于航空、航天器构件和冷挤、冷冲压模具等。
半奥氏体沉淀硬化型不锈钢是一类高合金的超高强度钢,如常见的17-7PH(OCr17Ni7Al)、PH15-7Mo(OCr15Ni7Mo2Al)和AFC-77(15Cr15Mo5Co14V)等。这类钢经固溶化处理,冷却到室温为奥氏体组织,再经过冷加工、冷处理或者加热到750℃进行调整处理后,奥氏体转变为马氏体。后在400-550℃时效,便得到在回火马氏体基体上弥散分布着第二相强化组织的超高强度钢。这类钢在315℃以上长时间使用时,会因为金属间化合物沉淀而使材料变脆,所以使用温度要限制在315℃以下。这类钢主要用于制造航空器件构件、高压容器和高应力腐蚀化工设备零件等。
高强度钢板是指牌号Q420钢,强度高,特别是在正火或正火加回火状态有较高的综合力学性能。主要用于大型船舶,桥梁,电站设备,中、高压锅炉,高压容器,机车车辆,起重机械,矿山机械及其他大型焊接结构件。
2、先进高强度钢,也称为高级高强度钢,其英文缩写为AHSS(Advanced High Strength Steel)。国际钢铁协会( IISI)先进高强钢应用指南第三版中将高强钢分为传统高强钢(Conventional HSS)和先进高强钢(AHSS)。传统高强钢主要包括碳锰钢(C-Mn)、烘烤硬化(BH)钢、高强度无间隙原子(HSS-IF)钢和高强度低合金(HSLA)钢;AHSS主要包括双相钢(DP)、相变诱导塑性(TRIP)钢、马氏体(M)钢、复相钢(CP)、热成形(HF)钢和孪晶诱导塑性(TWIP)钢;AHSS的强度在500MPa到1500MPa之间,具有很好吸能性,在汽车轻量化和提高安全性方面起着非常重要的作用,已经广泛应用于汽车工业,主要应用于汽车结构件、安全件和加强件如A/B/C柱、车门槛、前后保险杠、车门防撞梁、横梁、纵梁、座椅滑轨等零件; DP钢早于1983年由瑞典SSAB钢板有限公司实现量产。
双相钢组成是铁素体基体包含一个坚硬的第二相马氏体。通常强度随着第二相的体积分数的增加而增加。在某些情况下,热轧钢需要在边缘提高抗拉强度(典型的措施是通过空*的扩张能力),这样热轧钢便需要具有了大量的重要的贝氏体结构。
在双相钢中,在实际冷却速度中形成的马氏体中的碳式钢的淬硬性增加。锰、铬、钼、钒、和镍元素单独添加或联合添加也能增加钢的淬硬性。碳、硅和磷也加强了作为铁素体溶质的马氏体的强度。
高强度及高延性钢的微观组织是在铁素体基体中还保留着残余奥氏体组织。除了体积分数少为5%的残余奥氏体外,还存在着不同数额的马氏体和贝氏体等坚硬组织。
具有代表性的多相钢需要很高的抗拉强度极限才能转变成钢。多相钢的组成是有细小的铁素体组织和体积分数较高的坚硬的相,并且细小的沉淀使其强度进一步加强。和双相钢和高强度、高延性钢一样,多相钢也包含了很多和它们相同的合金元素,但也经常有少量的铌、钛、和钒形成细小的、高强度的沉淀物。在抗拉强度值在800MPa或更高时,多相钢表现出了更高的屈服强度。多相钢的典型特征是具有高的成形性、很高的能量吸收和很高的残余变形能力。
为了生成马氏体钢,在热轧或退火中存在的奥氏体在淬火和连续退火曲线中的冷却阶段全部转变成马氏体。该结构也会在成形后的热处理过程中形成。马氏体钢具有非常高的强度,抗拉强度极限达到了1700MPa。马氏体钢经常需要用等温回火来提高其韧性,这样便能在具有极高的强度的同时具有很好的成形性。
所有的先进高速钢的生产都要控制奥氏体相或奥氏体加铁素体相的冷却速度,可以在外围表面进行热磨削(如热轧产品),也可以在连续退火炉中局部冷却(连续退火或热浸涂产品)。马氏体钢是通过快速淬火致使大部分奥氏体转变成马氏体相而产生的。铁素体加马氏体双相钢的生产,是通过控制其冷却速度,使奥氏体相(见于热轧钢中)或铁素体+马氏体双相(见于连续退火和热浸涂钢中)在残余奥氏体快速冷却转变成马氏体之前,将其中一些奥氏体转变成铁素体。TRIP钢通常需要保持在中温等温的条件以产生贝氏体。较高的硅碳含量使TRIP钢在后的微观结构含过多的残余奥氏体。多相钢还遵循一个类似的冷却方式,但这种情况之下,化学元素的调整会产生极少的残余奥氏体并形成细小的析出以加强马氏体和贝氏体相。
三、哪种不锈钢是高强度高密度的
不锈钢是高强度高密度的是0Cr19Ni14Mo3Nb奥氏体不锈钢,对应317Nb,耐蚀性能和强度高,密度高。
高级:316,316Ti(0Cr18Ni12Mo2,0Cr18Ni12Mo2Ti)之类
次高:321,321Ti(1Cr18Ni9,1Cr18Ni9Ti)之类
304是一种通用性的不锈钢,它广泛地用于制作要求良好综合性能(耐腐蚀和成型性)的设备和机件。
301不锈钢在形变时呈现出明显的加工硬化现象,被用于要求较高强度的各种场合。
302不锈钢实质上就是含碳量更高的304不锈钢的变种,通过冷轧可使其获得较高的强度。
302B是一种含硅量较高的不锈钢,它具有较高的抗高温氧化性能。
303和303Se是分别含有硫和硒的易切削不锈钢,用于主要要求易切削和表而光浩度高的场合。303Se不锈钢也用于制作需要热镦的机件,因为在这类条件下,这种不锈钢具有良好的可热加工性。
304L是碳含量较低的304不锈钢的变种,用于需要焊接的场合。较低的碳含量使得在靠近焊缝的热影响区中所析出的碳化物减至少,而碳化物的析出可能导致不锈钢在某些环境中产生晶间腐蚀(焊接侵蚀)。
304N是一种含氮的不锈钢,加氮是为了提高钢的强度。
305和384不锈钢含有较高的镍,其加工硬化率低,适用于对冷成型性要求高的各种场合。
309、310、314及330不锈钢的镍、铬含量都比较高,为的是提高钢在高温下的抗氧化性能和蠕变强度。而30S5和310S乃是309和310不锈钢的变种,所不同者只是碳含量较低,为的是使焊缝附近所析出的碳化物减至少。330不锈钢有着特别高的抗渗碳能力和抗热震性.
316和317型不锈钢含有铝,因而在海洋和化学工业环境中的抗点腐蚀能力大大地优于304不锈钢。其中,316型不锈钢由变种包括低碳不锈钢316L、含氮的高强度不锈钢316N以及合硫量较高的易切削不锈钢316F。
321、347及348是分别以钛,铌加钽、铌稳定化的不锈钢,适宜作高温下使用的焊接构件。