sram存储颗粒芯片?sdram基本原理

seosqwseo4个月前 (09-16)测评日记33

一、16位内存颗粒是什么意思

1、16位内存颗粒是指存储数据的微小元件。它们是计算机系统中的主要部件,用于存储和传输信息。内存颗粒每个只能存储一小部分数据,并在需要时将其转移到其他部分。通过将多个内存颗粒连接在一起,就可以创建更大的存储空间,以满足不同应用程序的需求。内存颗粒的大小和性能对计算机的速度和处理能力有着重要的影响。

2、现代计算机内存颗粒通常采用集成电路技术制造。这种技术允许将多个电子器件集成在一个微小的芯片上,从而提高了存储密度和传输速度。内存颗粒的大小和形状可以根据不同计算机的要求进行定制。在电子设备中,内存颗粒的种类和性能也有很大的差异,其中包括DRAM、SRAM、Flash存储器等等。

3、随着科技的不断进步,内存颗粒的应用也越来越广泛。除了作为计算机内存的主要组成部分之外,内存颗粒还广泛应用于智能手机、平板电脑、游戏机、数字摄像机和其他电子设备中。这些设备需要高速存储和传输大量的数据和内容,内存颗粒的性能和速度对于生产商和用户来说都非常重要。因此,内存颗粒的质量和技术水平一直是电子工业发展的重要方面。

二、sdram基本原理

行地址解码器(row decoder)将会首先确定行地址,然后列地址解码器(column decoder)将会确定列地址,这样就能确定唯一的存储数据的位置,然后该数据就会通过RAM数据接口将数据传到数据总线。

SRAM是“static RAM(静态随机存储器)”的简称,之所以这样命名是因为当数据被存入其中后不会消失(同DRAM动态随机存储器是不同,DRAM必须在一定的时间内不停的刷新才能保持其中存储的数据)

Enable(OE):有的SRAM芯片中也有这个引脚,但是上面的图中并没有。这个引脚同WE引脚的功能是相对的,它是让SRAM知道要进行读取*作而不是写入*作。从Dout引脚读取1**t数据需要以下的步骤:

1)通过地址总线把要读取的**t的地址传送到相应的读取地址引脚(这个时候/WE引脚应该没有激活,所以SRAM知道它不应该执行写入*作)。

3)激活/OE引脚让SRAM知道是读取*作。

第三步之后,要读取的数据就会从DOut引脚传输到数据总线。怎么过程非常的简单吧?同样,写入1**t数据的过程也是非常的简单的。

1)通过地址总线确定要写入信息的位置(确定/OE引脚没有被激活)。

2)通过数据总线将要写入的数据传输到Dout引脚。

4)激活/WE引脚通知SRAM知道要进行写入*作。

DRAM通过DRAM接口把地址一分为二,然后利用两个连续的时钟周期传输地址数据。这样就达到了使用一半的针脚实现同SGRAM同样的功能的目的,这种技术被称为多路技术(multiplexing)

那么为什么好减少地址引脚呢?这样做有什么好处呢?前面我们曾经介绍过,存储1**t的数据SRAM需要4-6个晶体管但是DRAM仅仅需要1个晶体管,那么这样同样容量的SRAM的体积比DRAM大至少4倍。这样就意味着你没有足够空间安放同样数量的引脚(因为针脚并没有因此减少4倍)。当然为了安装同样数量的针脚,也可以把芯片的体积加大,但是这样就提高芯片的生产成本和功耗,所以减少针脚数目也是必要的,对于现在的大容量DRAM芯片,多路寻址技术已经是必不可少的了。

当然多路寻址技术也使得读写的过程更加复杂了,这样在设计的时候不仅仅DRAM芯片更加复杂了,DRAM接口也要更加复杂,在我们介绍DRAM读写过程之前,请大家看一张DRAM芯片内部结构示意图:

首先为了能存储1字节(8 **t)的信息,就需要8个1**t RAM基本存储单元堆叠在一起,这也意味着这8颗芯片被赋予了同样的地址。下面的示意图可以帮助你比较形象的了解这一点(下图所示的图例中仅仅画了4个存储单元,大家当成8个来看就可以了)。

通常这8颗1**t芯片是通过地址总线和数据总线在PCB(印刷电路板)上连接而成的,对于CPU来说它就是一颗8**t的RAM芯片,而不再是独立的8个1 **t芯片。在上图所示的地址总线位宽是22**t,这样这个地址总线所能控制的存储模块的容量应该是222=4194304**t,也就是4MB的容量;数据总线的位宽是8**t,就是通过刚才提到的8个1**t的基本存储单元的Dout并联在一起实现的--这样也能够满足CPU的要求了。(对于这种存储颗粒我们称之为4194304 x 8模块或者4Mx8,注意这里的“M”不是“MByte”而是“M**t”)。为了举例说明,我们用一条TI(德仪公司)出品的TM4100GAD8 SIMM内存为例来说明,因为这种内存的构造相对比较简单,便于大家理解。TM4100GAD8基于4M x 8模块制造,容量4MB,采用30线SIMM封装。如果前面我说的东西你看明白了,就应该知道这条内存采用了4Mx1 DRAM颗粒。下面的数据是我在TI官方网站上找到的(目前很少有公司的网站还提供自己以前产品的数据):构造:4194304× 8。工作电压:5-V。30线SIMM(Single In-Line Memory Module:SIMM)。采用8片4M**t DRAM内存颗粒,塑料SOJs封装。长刷新期16 ms(1024周期)。

如果一个DRAM芯片具有8个数据引脚,那么这个基本储存单元一次就可以输出8**t的数据,而不像是在原来的TM4100GAD8 SIMM芯片中每次仅仅能输出1**t数据了。这样的话,如果我们需要制造一个同TM4100GAD8一样容量的内存,那么我们可以不使用前面所使用的4M x 1**t芯片,而是采用1M x 8**t芯片,这样仅仅需要4片芯片就可以得到一个容量为4MB,位宽为32**t的模组。芯片数目减少直接的好处当然是可以减少功耗了,当然也简化了生产过程

1、首先行地址被传送到行地址引脚,在/RAS引脚被激活之前,RAS处于预充电状态,CAS也处于预充电状态,当然/WE此时依然是高电平,FPM至少知道自己不会进行写*作。

2、/RAS引脚被赋予低电平而被激活,行地址被送到行地址选通器,然后选择正确的行送到传感放大器,就在/RAS引脚被激活的同时,tRAC开始计时。

3、CAS一直处于预充电状态,直到列地址被传送到列地址引脚并且/CAS引脚得到一个低电平而被激活(tCRC时间开始计时),然后下面的事情我们也应该很清楚了,列地址被送到列地址选通器,然后需要读取的数据位置被锁定,这个时候Dout引脚被激活,第一组数据就被传送到数据总线上。

4、对于原来介绍的DRAM,这个时候一个读取周期就结束了,不过对于FPM则不同,在传送第一组数据期间,CAS失活(RAS依然保持着激活状态)并且进入预充电状态,等待第二组列地址被传送到列地址引脚,然后进行第二组数据的传输,如此周而复始直至4组数据全部找到并且传输完毕。

5、当第四组数据开始传送的时候,RAS和CAS相继失活进入到预充电状态,这样FPM的一个完整的读取周期方告结束。FPM之所以能够实现这样的传输模式,就是因为所需要读取的4个字节的行地址是相同的但是列地址不同,所以它们不必为了得到一个相同的列地址而去做重复的工作。

6、这样的工作模式显然相对于普通的DRAM模式节省了很多的时间,特别是节省了3次RAS预充电的时间和3个tRAC时间,从而进一步提高的效率。

The ACTIVE command is used to open(or activate) a row in a particular bank for a subsequent access.

(用于对一个特定的bank的行进行连续的访问,前提是open或者activate该行)

This row remains active(or open) for accesses until a precharge command is issued to that bank. A PRECHARGE command must be issued before opening a different row in the same bank

-----行active持续到一个precharge命令发出,在同一个bank中open不同行时需要发出一个precharge命令

The PRECHARGE command is used to deactivate the open row in a particular bank or the open row in all banks.

----PRECHARGE命令是用来deactivate行或者activate行 in all banks

三、芯片的封装形式有那些

球形触点陈列,表面贴装型封装之一。在印刷基板的背面按陈列方式制作出球形凸点用以代替引脚,在印刷基板的正面装配LSI芯片,然后用模压树脂或灌封方法进行密封。也称为凸点陈列载体(PAC)。引脚可超过200,是多引脚LSI用的一种封装。封装本体也可做得比QFP(四侧引脚扁平封装)小。例如,引脚中心距为1.5mm的360引脚 BGA仅为31mm见方;而引脚中心距为0.5mm的304引脚QFP为40mm见方。而且BGA不用担心QFP那样的引脚变形问题。该封装是美国Motorola公司开发的,首先在便携式电话等设备中被采用,今后在美国有可能在个人计算机中普及。初,BGA的引脚(凸点)中心距为1.5mm,引脚数为225。现在也有一些LSI厂家正在开发500引脚的BGA。BGA的问题是回流焊后的外观检查。现在尚不清楚是否有效的外观检查方法。有的认为,由于焊接的中心距较大,连接可以看作是稳定的,只能通过功能检查来处理。美国Motorola公司把用模压树脂密封的封装称为OMPAC,而把灌封方法密封的封装称为GPAC(见OMPAC和GPAC)。

2、BQFP(quad flat package with bumper)

带缓冲垫的四侧引脚扁平封装。QFP封装之一,在封装本体的四个角设置突起(缓冲垫)以防止在运送过程中引脚发生弯曲变形。美国半导体厂家主要在微处理器和ASIC等电路中采用此封装。引脚中心距0.635mm,引脚数从84到196左右(见QFP)。

3、碰焊PGA(butt joint pin grid array)

表面贴装型PGA的别称(见表面贴装型PGA)。

表示陶瓷封装的记号。例如,CDIP表示的是陶瓷DIP。是在实际中经常使用的记号。

用玻璃密封的陶瓷双列直插式封装,用于ECL RAM,DSP(数字信号处理器)等电路。带有玻璃窗口的Cerdip用于紫外线擦除型EPROM以及内部带有EPROM的微机电路等。引脚中心距2.54mm,引脚数从8到42。在日本,此封装表示为DIP-G(G即玻璃密封的意思)。

表面贴装型封装之一,即用下密封的陶瓷QFP,用于封装DSP等的逻辑LSI电路。带有窗口的Cerquad用于封装EPROM电路。散热性比塑料QFP好,在自然空冷条件下可容许1.5~ 2W的功率。但封装成本比塑料QFP高3~5倍。引脚中心距有1.27mm、0.8mm、0.65mm、0.5mm、0.4mm等多种规格。引脚数从32到368。

7、CLCC(ceramic leaded chip carrier)

带引脚的陶瓷芯片载体,表面贴装型封装之一,引脚从封装的四个侧面引出,呈丁字形。

带有窗口的用于封装紫外线擦除型EPROM以及带有EPROM的微机电路等。此封装也称为QFJ、QFJ-G(见QFJ)。

板上芯片封装,是*芯片贴装技术之一,半导体芯片交接贴装在印刷线路板上,芯片与基板的电气连接用引线缝合方法实现,芯片与基板的电气连接用引线缝合方法实现,并用树脂覆盖以确保可靠性。虽然COB是简单的*芯片贴装技术,但它的封装密度远不如TAB和倒片焊技术。

双侧引脚扁平封装。是SOP的别称(见SOP)。以前曾有此称法,现在已基本上不用。

10、DIC(dual in-line ceramic package)

陶瓷DIP(含玻璃密封)的别称(见DIP).

DIP的别称(见DIP)。欧洲半导体厂家多用此名称。

双列直插式封装。插装型封装之一,引脚从封装两侧引出,封装材料有塑料和陶瓷两种。DIP是普及的插装型封装,应用范围包括标准逻辑IC,存贮器LSI,微机电路等。引脚中心距2.54mm,引脚数从6到64。封装宽度通常为15.2mm。有的把宽度为7.52mm和10.16mm的封装分别称为skinny DIP和slim DIP(窄体型DIP)。但多数情况下并不加区分,只简单地统称为DIP。另外,用低熔点玻璃密封的陶瓷DIP也称为cerdip(见cerdip)。

双侧引脚小外形封装。SOP的别称(见SOP)。部分半导体厂家采用此名称。

14、DICP(dual tape carrier package)

双侧引脚带载封装。TCP(带载封装)之一。引脚制作在绝缘带上并从封装两侧引出。由于利用的是TAB(自动带载焊接)技术,封装外形非常薄。常用于液晶显示驱动LSI,但多数为定制品。另外,0.5mm厚的存储器LSI簿形封装正处于开发阶段。在日本,按照EIAJ(日本电子机械工业)会标准规定,将DICP命名为DTP。

15、DIP(dual tape carrier package)

同上。日本电子机械工业会标准对DTCP的命名(见DTCP)。

扁平封装。表面贴装型封装之一。QFP或SOP(见QFP和SOP)的别称。部分半导体厂家采用此名称。

倒焊芯片。*芯片封装技术之一,在LSI芯片的电极区制作好金属凸点,然后把金属凸点与印刷基板上的电极区进行压焊连接。封装的占有面积基本上与芯片尺寸相同。是所有封装技术中体积小、薄的一种。但如果基板的热膨胀系数与LSI芯片不同,就会在接合处产生反应,从而影响连接的可靠性。因此必须用树脂来加固LSI芯片,并使用热膨胀系数基本相同的基板材料。

18、FQFP(fine pitch quad flat package)

小引脚中心距QFP。通常指引脚中心距小于0.65mm的QFP(见QFP)。部分导导体厂家采用此名称。

19、CPAC(globe top pad array carrier)

美国Motorola公司对BGA的别称(见BGA)。

20、CQFP(quad fiat package with guard ring)

带保护环的四侧引脚扁平封装。塑料QFP之一,引脚用树脂保护环掩蔽,以防止弯曲变形。在把LSI组装在印刷基板上之前,从保护环处切断引脚并使其成为海鸥翼状(L形状)。这种封装在美国Motorola公司已批量生产。引脚中心距0.5mm,引脚数多为208左右。

表示带散热器的标记。例如,HSOP表示带散热器的SOP。

22、pin grid array(surface mount type)

表面贴装型PGA。通常PGA为插装型封装,引脚长约3.4mm。表面贴装型PGA在封装的底面有陈列状的引脚,其长度从1.5mm到2.0mm。贴装采用与印刷基板碰焊的方法,因而也称为碰焊PGA。因为引脚中心距只有1.27mm,比插装型PGA小一半,所以封装本体可制作得不怎么大,而引脚数比插装型多(250~528),是大规模逻辑LSI用的封装。封装的基材有多层陶瓷基板和玻璃环氧树脂印刷基数。以多层陶瓷基材制作封装已经实用化。

23、JLCC(J-leaded chip carrier)

J形引脚芯片载体。指带窗口CLCC和带窗口的陶瓷QFJ的别称(见CLCC和QFJ)。部分半导体厂家采用的名称。

24、LCC(Leadless chip carrier)

无引脚芯片载体。指陶瓷基板的四个侧面只有电极接触而无引脚的表面贴装型封装。是高速和高频IC用封装,也称为陶瓷QFN或QFN-C(见QFN)。

触点陈列封装。即在底面制作有阵列状态坦电极触点的封装。装配时插入插座即可。现已实用的有227触点(1.27mm中心距)和447触点(2.54mm中心距)的陶瓷LGA,应用于高速逻辑LSI电路。LGA与QFP相比,能够以比较小的封装容纳更多的输入输出引脚。另外,由于引线的阻抗小,对于高速LSI是很适用的。但由于插座制作复杂,成本高,现在基本上不怎么使用。预计今后对其需求会有所增加。

芯片上引线封装。LSI封装技术之一,引线框架的前端处于芯片上方的一种结构,芯片的中心附近制作有凸焊点,用引线缝合进行电气连接。与原来把引线框架布置在芯片侧面附近的结构相比,在相同大小的封装中容纳的芯片达1mm左右宽度。

27、LQFP(low profile quad flat package)

薄型QFP。指封装本体厚度为1.4mm的QFP,是日本电子机械工业会根据制定的新QFP外形规格所用的名称。

陶瓷QFP之一。封装基板用氮化铝,基导热率比氧化铝高7~8倍,具有较好的散热性。封装的框架用氧化铝,芯片用灌封法密封,从而抑制了成本。是为逻辑LSI开发的一种封装,在自然空冷条件下可容许W3的功率。现已开发出了208引脚(0.5mm中心距)和160引脚(0.65mm中心距)的LSI逻辑用封装,并于1993年10月开始投入批量生产。

多芯片组件。将多块半导体*芯片组装在一块布线基板上的一种封装。根据基板材料可分为MCM-L,MCM-C和MCM-D三大类。MCM-L是使用通常的玻璃环氧树脂多层印刷基板的组件。布线密度不怎么高,成本较低。MCM-C是用厚膜技术形成多层布线,以陶瓷(氧化铝或玻璃陶瓷)作为基板的组件,与使用多层陶瓷基板的厚膜混合IC类似。两者无明显差别。布线密度高于MCM-L。MCM-D是用薄膜技术形成多层布线,以陶瓷(氧化铝或氮化铝)或Si、Al作为基板的组件。布线密谋在三种组件中是高的,但成本也高。

小形扁平封装。塑料SOP或SSOP的别称(见SOP和SSOP)。部分半导体厂家采用的名称。

31、MQFP(metric quad flat package)

按照JEDEC(美国联合电子设备委员会)标准对QFP进行的一种分类。指引脚中心距为

0.65mm、本体厚度为3.8mm~2.0mm的标准QFP(见QFP)。

美国Olin公司开发的一种QFP封装。基板与封盖均采用铝材,用粘合剂密封。在自然空冷条件下可容许2.5W~2.8W的功率。日本新光电气工业公司于1993年获得特许开始生产。

QFI的别称(见QFI),在开发初期多称为MSP。QFI是日本电子机械工业会规定的名称。

34、OPMAC(over molded pad array carrier)

模压树脂密封凸点陈列载体。美国Motorola公司对模压树脂密封BGA采用的名称(见

表示塑料封装的记号。如PDIP表示塑料DIP。

凸点陈列载体,BGA的别称(见BGA)。

37、PCLP(printed circuit board leadless package)

印刷电路板无引线封装。日本富士通公司对塑料QFN(塑料LCC)采用的名称(见QFN)。引脚中心距有0.55mm和0.4mm两种规格。目前正处于开发阶段。

38、PFPF(plastic flat package)

塑料扁平封装。塑料QFP的别称(见QFP)。部分LSI厂家采用的名称。

陈列引脚封装。插装型封装之一,其底面的垂直引脚呈陈列状排列。封装基材基本上都采用多层陶瓷基板。在未专门表示出材料名称的情况下,多数为陶瓷PGA,用于高速大规模逻辑LSI电路。成本较高。引脚中心距通常为2.54mm,引脚数从64到447左右。了为降低成本,封装基材可用玻璃环氧树脂印刷基板代替。也有64~256引脚的塑料PGA。

另外,还有一种引脚中心距为1.27mm的短引脚表面贴装型PGA(碰焊PGA)。(见表面贴装

驮载封装。指配有插座的陶瓷封装,形关与DIP、QFP、QFN相似。在开发带有微机的设备时用于评价程序确认*作。例如,将EPROM插入插座进行调试。这种封装基本上都是定制品,市场上不怎么流通。

41、PLCC(plastic leaded chip carrier)

带引线的塑料芯片载体。表面贴装型封装之一。引脚从封装的四个侧面引出,呈丁字形,

是塑料制品。美国德克萨斯仪器公司首先在64k位DRAM和256kDRAM中采用,现在已经普及用于逻辑LSI、DLD(或程逻辑器件)等电路。引脚中心距1.27mm,引脚数从18到84。

J形引脚不易变形,比QFP容易*作,但焊接后的外观检查较为困难。PLCC与LCC(也称QFN)相似。以前,两者的区别仅在于前者用塑料,后者用陶瓷。但现在已经出现用陶瓷制作的J形引脚封装和用塑料制作的无引脚封装(标记为塑料LCC、PCLP、P-LCC等),已经无法分辨。为此,日本电子机械工业会于1988年决定,把从四侧引出J形引脚的封装称为QFJ,把在四侧带有电极凸点的封装称为QFN(见QFJ和QFN)。

42、P-LCC(plastic teadless chip carrier)(plastic leaded chip currier)

有时候是塑料QFJ的别称,有时候是QFN(塑料LCC)的别称(见QFJ和QFN)。部分LSI厂家用PLCC表示带引线封装,用P-LCC表示无引线封装,以示区别。

43、QFH(quad flat high package)

四侧引脚厚体扁平封装。塑料QFP的一种,为了防止封装本体断裂,QFP本体制作得较厚(见QFP)。部分半导体厂家采用的名称。

44、QFI(quad flat I-leaded packgac)

四侧I形引脚扁平封装。表面贴装型封装之一。引脚从封装四个侧面引出,向下呈I字。

也称为MSP(见MSP)。贴装与印刷基板进行碰焊连接。由于引脚无突出部分,贴装占有面积小于QFP。日立制作所为视频模拟IC开发并使用了这种封装。此外,日本的Motorola公司的PLL IC也采用了此种封装。引脚中心距1.27mm,引脚数从18于68。

45、QFJ(quad flat J-leaded package)

四侧J形引脚扁平封装。表面贴装封装之一。引脚从封装四个侧面引出,向下呈J字形。是日本电子机械工业会规定的名称。引脚中心距1.27mm。材料有塑料和陶瓷两种。塑料QFJ多数情况称为PLCC(见PLCC),用于微机、门陈列、DRAM、ASSP、OTP等电路。引脚数从18至84。陶瓷QFJ也称为CLCC、JLCC(见CLCC)。带窗口的封装用于紫外线擦除型EPROM以及带有EPROM的微机芯片电路。引脚数从32至84。

46、QFN(quad flat non-leaded package)

四侧无引脚扁平封装。表面贴装型封装之一。现在多称为LCC。QFN是日本电子机械工业会规定的名称。封装四侧配置有电极触点,由于无引脚,贴装占有面积比QFP小,高度比QFP低。但是,当印刷基板与封装之间产生应力时,在电极接触处就不能得到缓解。因此电极触点难于作到QFP的引脚那样多,一般从14到100左右。材料有陶瓷和塑料两种。当有LCC标记时基本上都是陶瓷QFN。电极触点中心距1.27mm。塑料QFN是以玻璃环氧树脂印刷基板基材的一种低成本封装。电极触点中心距除1.27mm外,还有0.65mm和0.5mm两种。这种封装也称为塑料LCC、PCLC、P-LCC等。

四侧引脚扁平封装。表面贴装型封装之一,引脚从四个侧面引出呈海鸥翼(L)型。基材有陶瓷、金属和塑料三种。从数量上看,塑料封装占绝大部分。当没有特别表示出材料时,多数情况为塑料QFP。塑料QFP是普及的多引脚LSI封装。不仅用于微处理器,门陈列等数字逻辑LSI电路,而且也用于VTR信号处理、音响信号处理等模拟LSI电路。引脚中心距有1.0mm、0.8mm、0.65mm、0.5mm、0.4mm、0.3mm等多种规格。0.65mm中心距规格中多引脚数为304。日本将引脚中心距小于0.65mm的QFP称为QFP(FP)。但现在日本电子机械工业会对QFP的外形规格进行了重新评价。在引脚中心距上不加区别,而是根据封装本体厚度分为QFP(2.0mm~3.6mm厚)、LQFP(1.4mm厚)和TQFP(1.0mm厚)三种。另外,有的LSI厂家把引脚中心距为0.5mm的QFP专门称为收缩型QFP或SQFP、VQFP。但有的厂家把引脚中心距为0.65mm及0.4mm的QFP也称为SQFP,至使名称稍有一些混*。QFP的缺点是,当引脚中心距小于0.65mm时,引脚容易弯曲。为了防止引脚变形,现已出现了几种改进的QFP品种。如封装的四个角带有树指缓冲垫的BQFP(见BQFP);带树脂保护环覆盖引脚前端的GQFP(见GQFP);在封装本体里设置测试凸点、放在防止引脚变形的专用夹具里就可进行测试的TPQFP(见TPQFP)。在逻辑LSI方面,不少开发品和高可靠品都封装在多层陶瓷QFP里。引脚中心距小为0.4mm、引脚数多为348的产品也已问世。此外,也有用玻璃密封的陶瓷QFP(见Gerqad)。

小中心距QFP。日本电子机械工业会标准所规定的名称。指引脚中心距为0.55mm、0.4mm、0.3mm等小于0.65mm的QFP(见QFP)。

49、QIC(quad in-line ceramic package)

陶瓷QFP的别称。部分半导体厂家采用的名称(见QFP、Cerquad)。

50、QIP(quad in-line plastic package)

塑料QFP的别称。部分半导体厂家采用的名称(见QFP)。

51、QTCP(quad tape carrier package)

四侧引脚带载封装。TCP封装之一,在绝缘带上形成引脚并从封装四个侧面引出。是利用TAB技术的薄型封装(见TAB、TCP)。

52、QTP(quad tape carrier package)

四侧引脚带载封装。日本电子机械工业会于1993年4月对QTCP所制定的外形规格所用的名称(见TCP)。

54、QUIP(quad in-line package)

四列引脚直插式封装。引脚从封装两个侧面引出,每隔一根交错向下弯曲成四列。引脚中心距1.27mm,当插入印刷基板时,插入中心距就变成2.5mm。因此可用于标准印刷线路板。是比标准DIP更小的一种封装。日本电气公司在台式计算机和家电产品等的微机芯片中采用了些种封装。材料有陶瓷和塑料两种。引脚数64。

55、SDIP(shrink dual in-line package)

收缩型DIP。插装型封装之一,形状与DIP相同,但引脚中心距(1.778mm)小于DIP(2.54mm),因而得此称呼。引脚数从14到90。也有称为SH-DIP的。材料有陶瓷和塑料两种。

56、SH-DIP(shrink dual in-line package)

同SDIP。部分半导体厂家采用的名称。

SIP的别称(见SIP)。欧洲半导体厂家多采用SIL这个名称。

58、SIMM(single in-line memory module)

单列存贮器组件。只在印刷基板的一个侧面附近配有电极的存贮器组件。通常指插入插座的组件。标准SIMM有中心距为2.54mm的30电极和中心距为1.27mm的72电极两种规格。在印刷基板的单面或双面装有用SOJ封装的1兆位及4兆位DRAM的SIMM已经在个人计算机、工作站等设备中获得广泛应用。至少有30~40%的DRAM都装配在SIMM里。

59、SIP(single in-line package)

单列直插式封装。引脚从封装一个侧面引出,排列成一条直线。当装配到印刷基板上时封装呈侧立状。引脚中心距通常为2.54mm,引脚数从2至23,多数为定制产品。封装的形状各异。也有的把形状与ZIP相同的封装称为SIP。

60、SK-DIP(skinny dual in-line package)

DIP的一种。指宽度为7.62mm、引脚中心距为2.54mm的窄体DIP。通常统称为DIP(见

61、SL-DIP(slim dual in-line package)

DIP的一种。指宽度为10.16mm,引脚中心距为2.54mm的窄体DIP。通常统称为DIP。

62、SMD(surface mount devices)

表面贴装器件。偶而,有的半导体厂家把SOP归为SMD(见SOP)。

SOP的别称。世界上很多半导体厂家都采用此别称。(见SOP)。

64、SOI(**all out-line I-leaded package)

I形引脚小外型封装。表面贴装型封装之一。引脚从封装双侧引出向下呈I字形,中心距1.27mm。贴装占有面积小于SOP。日立公司在模拟IC(电机驱动用IC)中采用了此封装。引脚数26。

65、SOIC(**all out-line integrated circuit)

SOP的别称(见SOP)。国外有许多半导体厂家采用此名称。

66、SOJ(Small Out-Line J-Leaded Package)

J形引脚小外型封装。表面贴装型封装之一。引脚从封装两侧引出向下呈J字形,故此得名。通常为塑料制品,多数用于DRAM和SRAM等存储器LSI电路,但绝大部分是DRAM。用SOJ封装的DRAM器件很多都装配在SIMM上。引脚中心距1.27mm,引脚数从20至40(见SIMM)。

67、SQL(Small Out-Line L-leaded package)

按照JEDEC(美国联合电子设备工程委员会)标准对SOP所采用的名称(见SOP)。

68、SONF(Small Out-Line Non-Fin)

无散热片的SOP。与通常的SOP相同。为了在功率IC封装中表示无散热片的区别,有意增添了NF(non-fin)标记。部分半导体厂家采用的名称(见SOP)。

69、SOF(**all Out-Line package)

小外形封装。表面贴装型封装之一,引脚从封装两侧引出呈海鸥翼状(L字形)。材料有塑料和陶瓷两种。另外也叫SOL和DFP。SOP除了用于存储器LSI外,也广泛用于规模不太大的ASSP等电路。在输入输出端子不超过10~40的领域,SOP是普及广的表面贴装封装。引脚中心距1.27mm,引脚数从8~44。另外,引脚中心距小于1.27mm的SOP也称为SSOP;装配高度不到1.27mm的SOP也称为TSOP(见SSOP、TSOP)。还有一种带有散热片的SOP。

70、SOW(Small Outline Package(Wide-Jype))

宽体SOP。部分半导体厂家采用的名称.

三极管封装:TO-92、TO-92S、TO-92NL、TO-126、TO-251、TO-251A、TO-252、TO-263(3线)、TO-220、T0-3、SOT-23、SOT-143、SOT-143R、SOT-25、SOT-26、TO-50。

电源芯片封装:SOT-23、T0-220、TO-263、SOT-223。

以TO-92,T0-3,TO-220,TO-263,SOT-23常用

相关文章

创维电视86英寸144Hz质量怎么样

创维电视86英寸144Hz质量怎么样

很多小伙伴在关注创维电视86英寸144Hz怎么样?质量好不好?使用测评如何?本文综合已购用户的客观使用分享和相应的优惠信息,为大家推荐一款高性价比的产品,一起来看看吧。...

先科(SAST)4K超薄超高清家用老人智能网络液晶电视机智慧语音广色域会议投屏平板防爆防蓝光平板电视【17】英寸价格多少钱

先科(SAST)4K超薄超高清家用老人智能网络液晶电视机智慧语音广色域会议投屏平板防爆防蓝光平板电视【17】英寸价格多少钱

很多小伙伴在关注先科(SAST)4K超薄超高清家用老人智能网络液晶电视机智慧语音广色域会议投屏平板防爆防蓝光平板电视【17】英寸怎么样?质量好不好?使用测评如何?本文综合已...

TCL43V8E好不好用

TCL43V8E好不好用

很多小伙伴在关注TCL43V8E怎么样?质量好不好?使用测评如何?本文综合已购用户的客观使用分享和相应的优惠信息,为大家推荐一款高性价比的产品,一起来看看吧。...

海信EK552023款怎么样?质量测评好不好用?

海信EK552023款怎么样?质量测评好不好用?

很多小伙伴在关注海信EK552023款怎么样?质量好不好?使用测评如何?本文综合已购用户的客观使用分享和相应的优惠信息,为大家推荐一款高性价比的产品,一起来看看吧。...

Camorama凯眸4K全景运动摄像机车载支架测评怎么样

Camorama凯眸4K全景运动摄像机车载支架测评怎么样

很多小伙伴在关注Camorama凯眸4K全景运动摄像机车载支架怎么样?质量好不好?使用测评如何?本文综合已购用户的客观使用分享和相应的优惠信息,为大家推荐一款高性价比的产品...

Apple苹果耳机有线原装线控手机耳机13/14耳塞入耳式XR有线耳机耳麦iPhone12ProMax/11/SE/8p/earpods质量好吗

Apple苹果耳机有线原装线控手机耳机13/14耳塞入耳式XR有线耳机耳麦iPhone12ProMax/11/SE/8p/earpods质量好吗

很多小伙伴在关注Apple苹果耳机有线原装线控手机耳机13/14耳塞入耳式XR有线耳机耳麦iPhone12ProMax/11/SE/8p/earpods怎么样?质量好不好?...