使用spss做非参数检验(如何利用SPSS做非参数检验)

seosqwseo3个月前 (08-22)测评日记32

一、Spss中非参数检验的两个独立样本检验

Spss中非参数检验的两个独立样本检验

Spss中非参数检验中两个独立样本检验中四个复选项的区别和适用范围

可以先数据-选择个案

1.Mann-Whitney U:主要用于判别两个独立样本所属的总体是否有相同的分布;

2. Kolmogorov-Smirnov Z:推测两个样本是否来自具有相同分布的总体;

3. Moses extreme reactions:检验两个独立样本之观察值的散布范围是否有差异存在,以检验两个样本是否来自具有同一分布的总体;

4. Wald-Wolfowitz runs:考察两个独立样本是否来自具有相同分布的总体。

1.Mann-Whitney U检验(又简称M-W检验),注重对分布的中心位置(平均水平)作检验,实际是检验H0:两样本所对应的总体具有相同的中心位置(中位数),属位置参数检验,而不管两总体分布的形状如何,因此通常假定两总体分布的形状相同,只有在这个前提下的中心位置相同才能说是两总体分布相同或两样本来自相同总体;若不能明确两总体分布的形状是否相同,则不宜单独使用此方法作分析了事,应同时作K-S检验或W-W检验,并对全部结果作综合分析。因为此方法与目前国内通用教材中的Wilcoxon Rank Sum检验法完全等价,故在结果中一并给出〔1〕。小样本时应读取精确概率作结论。

2.Kolmogorov-Smirnov Z检验(又简称K-S检验)是上述提到的Kolmogorov检验用于两个独立样本的情形,对全貌作检验。如果结论是两总体分布不相同,此方法尚不足以说明是位置不同、变异程度不同还是偏度不同,这是报告结果时应注意的。结果中的Z也是渐近统计量,大样本时α=0.05和α=0.01的界值分别是1.36和1.63,小样本时应读取结果中两个经验分布函数的大差值查界值表作结论,不可直接利用结果中的P值作结论。

3.Wald-Wolfowitz runs检验(又简称W-W检验)与K-S检验相似,也是对全貌作检验,但其功效不如后者;此方法实为Runs过程用于分析两个独立样本的情形。与K-S检验类似,如果结论是两总体分布不相同,此方法尚不足以说明是位置不同、变异程度不同还是偏度不同,报告结果时也应注意。若两样本有相同观察值,结果中提供大和小游程个数以及相应的P值,当依此两P值所作的结论相矛盾时,须计算平均游程个数,然后查表作结论或用正态近似法作检验。此过程自动地根据样本大小给出确切概率或正态近似法的结果。

4.Moses Test of Extreme Reactions检验注重于对分布范围(变异程度)作检验,实际是检验H0:两样本所对应的总体具有相同的分布范围。要求样本足够大。笔者尚未见到在医学领域中使用此方法的例子。

二、如何利用SPSS做非参数检验

如何利用SPSS做非参数检验

非参数检验是一个相当宏大的命题。由于实际情况的复杂多变,因此非参数检验包括了许多的各种各样的检验方法。之前我们提过,参数检验的使用条件是被检验的样本总体服从正态分布,而非参数检验的使用条件自然就是总体不服从或不确定是否服从正态分布。(实际上,这里要特别说明一下,尽管非参数检验的使用条件更宽松,但是考虑到精确性,不是特殊要求的话,我们还是尽可能的使用均值检验。)

比较常见的单样本非参数检验包括游程检验和单样本K-S检验。

游程检验:

它通常用于检测两个不同的观测值出现的次序是否具有随机性。举个例子,假如我们想知道每天来门诊就诊的人是否生病的次序是否随机,那么我们就使用游程检验。我们记录下来个案依次是否生病,比如是为1,否为0。然后我们就有了一个由0和1构成的变量列,

我们选择分析——非参数检验——旧对话框——游程,在主面板的检验变量列表里选入我们的0,1变量列。选项卡里边选择描述性,其他默认。割点可以全选。

输出结果看p值就可以了(我真的不想再重复怎么看p值了)。

单样本K-S检验;

这个就比较重要了。这个检验的目的在于观测样本的分布。哦,想想也知道很重要。只要我们想做相关和回归,那我们就好用K-S检验来检查一下样本的分布。毕竟pearson相关系数有效的一个重要条件就是样本服从正态分布。

我们选择分析——非参数检验——旧对话框——1样本K-S,在主对话框的检验变量列表里边选入我们想检验分布的变量(比如一群病号的血细胞数),选项卡里勾选描述性和四分位数,其他默认。在检验分布的下边有四个供勾选的框框,这个要注意一下,常规指的就是正态分布,相等则是指均匀分布,勾选你想检验的分布(一般是正态分布)。确定以后就可以看结果了。

描述性统计量表会给你一些基本指标,帮助你感受这些数据。K-S检验表的p值会告诉你样本是否服从指定的分布,如果是的话,表里边还有一些其他的指标可以参考。

单样本非参数检验已经结束了(怎么这么少?),下边我们说一下独立样本非参数检验。

两独立样本非参数检验:

打开菜单分析——非参数检验——旧对话框——2个独立样本,在主面板里边检验变量选入检验变量,分组变量选入分组变量,选项卡中选入描述性,四分位数,其他默认。在检验类型里边有四个供勾选的框框,我们一一学习。

Mann-whitney检验:

就是大名鼎鼎的秩和检验。

这个检验利用样本观察值得秩来推断两样本所在总体的分布是否相同(不晓得什么是秩的回去翻一遍你们的高数课本)。这是一个常用的检验。举例,假设我们知道一组患病的人和不患病的人的血细胞数,想检查是否具有差异,那么我们就使用秩和检验,我保证没举错例子,这个例子确实也可以用独立样本t检验来做(希望大家还记得什么叫独立样本t检验),当然也可以用秩和检验来做。

它会给出描述性统计量,秩表,检验统计量表。在后的一个表里边我们通过p值判断差异是否显著。

Moses极端反应检验:

它适用于实验条件导致两个不同方向的极端反应情况(多用于医学,比如有的*物会导致一部分病人好转的同时也会导致一部分病人恶化)。

它通过比较实验组和观察组,会告诉你是否产生了极端反应。(很神奇是不是?)

两样本K-S检验:

这个检验用来判断两个样本的分布是否相同。也是看p值哈。

Waldwolfowit游程检验:

用来检验两样本是否来自相同的总体。

注意:K-S检验适用于数值变量资料或者有序分类资料。

多个独立样本非参数检验:

打开菜单分析——非参数检验——旧对话框——K独立检验,在主面板的检验变量选入想检验的变量,分组变量选入分组变量。

检验类型有三种

K-W检验:

用来判断各样本分别代表的总体是否一致,(相当于单因素方差分析),适用于数值变量和有序分类变量。结果会给出秩,检验统计量。通过p值判断差异性。若想在进行两两比较,那就要用到上边介绍的秩和检验来进行比较了。

中位数:

适用于数值变量资料。用来检验样本代表的总体中位数是不是相等。这个用途还是比较广泛的。

Jonckheere-Terpstra检验:

这个检验用来处理完全随机的资料,比如研究随着年龄增加,学习成绩是否也增加?这种有序分组的变量就用这个检验来检验。(我真有点懒得介绍这么冷门的检验的冲动,不过为了完整还是写一下吧。)

两相关样本非参数检验:

打开两个关联样本检验主面板,检验对里边选择两个相关变量,检验类型有四种。

Wilcoxon:

它用来检验两个变量的分布是否有差异。比较常用。比如一种*物治疗前和治疗后是否有差别?就用这个检验。

符号检验和wilcoxon差不多,也是检查差值的。

Mcnemar检验:

上边两个都是数值型的连续性资料,这个检验则用于配对计数资料,将两组人进行配对,观察他们的某个指标是否有差异。

边际同质性检验是mcnemar检验的一般化和扩展,用于多分类配对计数资料。比如检验甲观察的分类结果和乙观察的分类结果是否有差异。(分好多类)

多个相关样本非参数检验:

打开多个相关样本检验主面板,选入检验变量,检验类型一共有三种。

Friedman检验:

用于检验多个相关样本是否来自同一总体,是wilcoxon的扩展。

KendallW检验:

检验样本的一致性的好坏(不考虑分布的形状,仅考虑分布是否一致)。

CochranQ检验:

用于二分数据时,是mcnemar检验的延伸,可以比较多个二分变量的比例的差异是否显著。

非参数检验大概就是这些内容了。和参数检验一样,这些检验的*作*作并不复杂,结果也不难判断,学习的难点在于记住这些不同的检验方法的适用的不同范围。需要多做一些练习,才可以巩固掌握住非参数检验的内容。

以上是小编为大家分享的关于如何利用SPSS做非参数检验的相关内容,更多信息可以关注环球青藤分享更多干货

三、SPSS非参数检验 独立样本

SPSS非参数检验:独立样本

一、概念:

独立样本的非参数检验是在对总体分布不甚了解的情况下,通过对两组或多组独立样本的分析来推断样本来自的总体的分布等是否存在显著差异的方法。独立样本是指在一个总体中随机抽样对在另一个总体中随机抽样没有影响的情况下所获得的样本。

二、选择检验(分析-非参数检验-独立样本-设置-选择检验)

1、根据数据自动选择检验。该设置将对具有两个组的数据应用Mann-Whitney U检验,或对具有k个组的数据应用Kruskal-Wallis单因素ANOVA检验。

2、自定义检验。这些设置允许您选择要执行的特定检验。

2.1、比较不同组间的分布。这些将生成独立样本检验,即样本是否来自同一总体。◎Mann-Whitney U(二样本)使用每个个案的秩来检验组是否抽取自同一总体。分组字段中按升序排列的第一个值定义第一个组,第二个值定义第二个组。如果分组字段有两个以上的值,则不生成此检验。◎Kolmogorov-Smirnov(二样本)对两个分布间中位数、离散、偏度等的任何差异很敏感。如果分组字段有两个以上的值,则不生成此检验。◎检验随机序列(二样本Wald-Wolfowitz)生成一个以组成员关系为准则的游程检验。如果分组字段有两个以上的值,则不生成此检验。◎Kruskal-Wallis单因素ANOVA(k样本)是Mann-Whitney U检验的扩展,它也是单因素方差分析的非参数模拟。您可以根据需要请求对k样本的多重比较,即所有成对多重比较或逐步降低比较。◎有序选项检验(k样本Jonckheere-Terpstra)可作为比Kruskal-Wallis功能更强大的选项,但前提是k样本需具有自然顺序。例如,k个总体可能代表k个上升的温度。“不同的温度产生相同的响应分布”这一假设是针对“温度升高,则响应的幅度增加”这一选择进行检验的。此处备选假设已排序,因此,Jonckheere-Terpstra是适用的检验。指定其他假设的顺序;从小到大规定其他假设:第一组的位置参数不等于第二组,第二组又不等于第三组,依此类推;从大到小规定其他假设:后一组的位置参数不等于倒数第二组,倒数第二组又不等于倒数第三组,依此类推。您可以根据需要请求对k样本的多重比较,即所有成对多重比较或逐步降低比较。

2.2、比较不同组间的范围。这可以生成一个独立样本检验,即样本是否具有相同范围。◎Moses极端反应(二样本)检验控制组与比较组。分组字段中按升序排列的第一个值定义控制组,第二个值定义比较组。如果分组字段有两个以上的值,则不生成此检验。

2.3、比较不同组间的中位数。这可以生成一个独立样本检验,即样本是否具有相同中位数。◎中位数检验(k样本)可以使用汇聚样本中位数(从数据集所有记录中计算)或自定义值作为假设中位数。您可以根据需要请求对k样本的多重比较,即所有成对多重比较或逐步降低比较。

2.4、估计不同组间的置信区间。Hodges-Lehman估计(二样本)可以为两个组的中位数差异生成一个独立样本估计和置信区间。如果分组字段有两个以上的值,则不生成此检验。

三、方法:

1、曼-惠特尼U检验:两独立样本的曼-惠特尼U检验可用于对两总体分布的比例判断。其原假设:两组独立样本来自的两总体分布无显著差异。曼-惠特尼U检验通过对两组样本平均秩的研究来实现判断。秩简单说就是变量值排序的名次,可以将数据按升序排列,每个变量值都会有一个在整个变量值序列中的位置或名次,这个位置或名次就是变量值的秩。

2、K-S检验:K-S检验不仅能够检验单个总体是否服从某一理论分布,还能够检验两总体分布是否存在显著差异。其原假设是:两组独立样本来自的两总体的分布无显著差异。这里是以变量值的秩作为分析对象,而非变量值本身。

3、游程检验:单样本游程检验是用来检验变量值的出现是否随机,而两独立变量的游程检验则是用来检验两独立样本来自的两总体的分布是否存在显著差异。其原假设是:两组独立样本来自的两总体的分布无显著差异。两独立样本的游程检验与单样本游程检验的思想基本相同,不同的是计算游程数的方法。两独立样本的游程检验中,游程数依赖于变量的秩。

4、极端反应检验:极端反应检验从另一个角度检验两独立样本所来自的两总体分布是否存在显著差异。其原假设是:两独立样本来自的两总体的分布无显著差异。

基本思想是:将一组样本作为控制样本,另一组样本作为实验样本。以控制样本作为对照,检验实验样本相对于控制样本是否出现了极端反应。如果实验样本没有出现极端反应,则认为两总体分布无显著差异,相反则认为存在显著差异。

5、中位数检验:中位数检验通过对多组独立样本的分析,检验它们来自的总体的中位数是否存在显著差异。其原假设是:多个独立样本来自的多个总体的中位数无显著差异。

基本思想是:如果多个总体的中位数无显著差异,或者说多个总体有共同的中位数,那么这个共同的中位数应在各样本组中均处在中间位置上。于是,每组样本中大于该中位数或小于该中位数的样本数目应大致相同。

6、Kruskal-Wallis检验:Kruskal-Wallis检验实质是两独立样本的曼-惠特尼U检验在多个样本下的推广,也用于检验多个总体的分布是否存在显著差异。其原假设是:多个独立样本来自的多个总体的分布无显著差异。

基本思想是:首先,将多组样本数据混合并按升序排序,求出各变量值的秩;然后,考察各组秩的均值是否存在显著差异。容易理解:如果各组秩的均值不存在显著差异,则是多组数据充分混合,数值相差不大的结果,可以认为多个总体的分布无显著差异;反之,如果各组秩的均值存在显著差异,则是多组数据无法混合,某些组的数值普遍偏大,另一些组的数值普遍偏小的结果,可以认为多个总体的分布有显著差异。

7、Jonckheere-Terpstra检验:Jonckheere-Terpstra检验也是用于检验多个独立样本来自的多个总体的分布是否存在显著差异的非参数检验方法,其原假设是:多个独立样本来自的多个总体的分布无显著差异。

基本思想与两独立样本的曼-惠特尼U检验类似,也是计算一组样本的观察值小于其他组样本的观察值的个数。

相关文章

小米(MI)电视65英寸EA65金属全面屏超高清4K智能wifi液晶网络远场语音液晶彩电平板电视机图文测评

小米(MI)电视65英寸EA65金属全面屏超高清4K智能wifi液晶网络远场语音液晶彩电平板电视机图文测评

很多小伙伴在关注小米(MI)电视65英寸EA65金属全面屏超高清4K智能wifi液晶网络远场语音液晶彩电平板电视机怎么样?质量好不好?使用测评如何?本文综合已购用户的客观使...

海信电视50英寸使用感受如何

海信电视50英寸使用感受如何

很多小伙伴在关注海信电视50英寸怎么样?质量好不好?使用测评如何?本文综合已购用户的客观使用分享和相应的优惠信息,为大家推荐一款高性价比的产品,一起来看看吧。...

飞利浦70英寸电视使用心得反馈

飞利浦70英寸电视使用心得反馈

很多小伙伴在关注飞利浦70英寸电视怎么样?质量好不好?使用测评如何?本文综合已购用户的客观使用分享和相应的优惠信息,为大家推荐一款高性价比的产品,一起来看看吧。...

华为智慧屏SPro好用吗

华为智慧屏SPro好用吗

很多小伙伴在关注华为智慧屏SPro怎么样?质量好不好?使用测评如何?本文综合已购用户的客观使用分享和相应的优惠信息,为大家推荐一款高性价比的产品,一起来看看吧。...

飞利浦(PHILIPS)75英寸测评使用介绍

飞利浦(PHILIPS)75英寸测评使用介绍

很多小伙伴在关注飞利浦(PHILIPS)75英寸怎么样?质量好不好?使用测评如何?本文综合已购用户的客观使用分享和相应的优惠信息,为大家推荐一款高性价比的产品,一起来看看吧...

创维电视50A3质量测评好不好

创维电视50A3质量测评好不好

很多小伙伴在关注创维电视50A3怎么样?质量好不好?使用测评如何?本文综合已购用户的客观使用分享和相应的优惠信息,为大家推荐一款高性价比的产品,一起来看看吧。...